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Abstract

Objective. Heart sounds can reflect detrimental changes in cardiac mechanical activity that are
common pathological characteristics of chronic heart failure (CHF). The ACC/AHA heart failure
(HF) stage classification is essential for clinical decision-making and the management of CHF. Herein,
amachine learning model that makes use of multi-scale and multi-domain heart sound features was
proposed to provide an objective aid for ACC/AHA HF stage classification. Approach. A dataset
containing phonocardiogram (PCG) signals from 275 subjects was obtained from two medical
institutions and used in this study. Complementary ensemble empirical mode decomposition and
tunable-Q wavelet transform were used to construct self-adaptive sub-sequences and multi-level sub-
band signals for PCG signals. Time-domain, frequency-domain and nonlinear feature extraction were
then applied to the original PCG signal, heart sound sub-sequences and sub-band signals to construct
multi-scale and multi-domain heart sound features. The features selected via the least absolute
shrinkage and selection operator were fed into a machine learning classifier for ACC/AHA HF stage
classification. Finally, mainstream machine learning classifiers, including least-squares support vector
machine (LS-SVM), deep belief network (DBN) and random forest (RF), were compared to determine
the optimal model. Main results. The results showed that the LS-SVM, which utilized a combination of
multi-scale and multi-domain features, achieved better classification performance than the DBN and
RF using multi-scale or/and multi-domain features alone or together, with average sensitivity,
specificity, and accuracy of 0.821, 0.955 and 0.820 on the testing set, respectively. Significance. PCG
signal analysis provides efficient measurement information regarding CHF severity and is a promising
noninvasive method for ACC/AHA HF stage classification.

1. Introduction

Chronic heart failure (CHF) is a multietiological disease that can occur when cardiac output is insufficient for
satisfying the needs of the body, and is the predominant clinical presentation in the typical end-stage of multiple
cardiovascular diseases. According to the American Heart Association/American College of Cardiology (ACC/
AHA) guideline (Yancy et al 2017), CHF can be classified into four stages (stages A, B, C and D) ranging from
developing heart failure (HF) without current or prior symptoms to advanced HF. The progression of CHF can
result in irreversible structural or functional cardiac tissue impairment. Once symptoms develop, stage CHF is
present and will never revert to stage B again (Ren et al 2020). Because early detection of CHF makes timely

© 2022 Institute of Physics and Engineering in Medicine


https://doi.org/10.1088/1361-6579/ac6d40
https://orcid.org/0000-0003-1698-6399
https://orcid.org/0000-0003-1698-6399
https://orcid.org/0000-0003-3872-0866
https://orcid.org/0000-0003-3872-0866
mailto:yinengzheng@cqmu.edu.cn
mailto:guoxm@cqu.edu.cn
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6579/ac6d40&domain=pdf&date_stamp=2022-06-28
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6579/ac6d40&domain=pdf&date_stamp=2022-06-28

10P Publishing

Physiol. Meas. 43 (2022) 065002 Y Zheng et al

intervention possible and delays the progression of CHF, in addition to be beneficial for improving long-term
prognosis (Goldberg and Jessup 2006), it is necessary to develop a convenient screening approach for the early
identification of CHF. Accurate classification of ACC/AHA HF stages plays an important role in clinical practice
(Gongetal 2017), but current guidelines do not provide objective classification strategies for HF stages. Thus,
development of a cost-effective approach that supports automatic HF stage classification is urgently needed for
establishing a screening of CHF, evaluating prognosis, and guiding therapy in clinical cardiology.

Symptoms and signs of HF are neither sensitive nor specific in early stage, which makes the clinical diagnosis
of HF staging difficult and challenging (Ammar et al 2007). Heart sounds are the direct result of cardiac
mechanical events, and cardiac auscultation allows practitioners to evaluate cardiac conditions efficiently and
provides primary diagnostic clues for evaluating cardiac condition prior to performing a special cardiac
examination. However, the use of cardiac auscultation is limited by imprecise judgements and human error that
may occur due to young clinicians’ inexperience. A phonocardiogram (PCG) is a high-fidelity digital record of
heart sound signal acquired using an electronic auscultation device on the chest. Advanced machine learning
techniques have been recently employed as mainstream approaches for the computer-aided diagnosis of
cardiovascular diseases based on meaningful feature extraction from PCG signals (Dwivedi et al 2018, Alfaras
etal2019, Das et al 2020, Li et al 2020a, 2020b). Recently, many studies have focused on the automatic
recognition of abnormalities based on heart sound classification (Eslamizadeh and Barati 2017, Whitaker et al
2017, Zhang etal 2017, Yadav et al 2020). Some researchers have applied PCG characteristics to the identification
of heart valvular diseases (Tang et al 2018, Cheng et al 2020). Moreover, several studies have used multi-modal
feature fusion for the detection of coronary heart disease (Winther et al 2018, Li et al 2020a). In contrast, the
number of studies in which heart sounds are used for the detection of CHF is relatively small. Heart sound
analysis has been shown potential in the differential diagnosis of CHF and the classification of HF phenotypes
(Zhengetal 2015, Liu et al 2019). To our knowledge, machine learning classifiers built on PCG features have not
been used previously in ACC/AHA HF stage classification. Furthermore, the relationship between heart sound
features and specific HF stages is unknown, and whether changes in heart sound features reflect the severity of
CHF and how these changes are related to the progression of CHF are also unknown.

Heart sound feature extraction is the process of unveiling hidden characteristic information about a PCG
signal in different domains, including time (Whitaker et al 2017), frequency (Khan et al 2020), time-frequency
(Lee etal 1999), and nonlinear features (Saeedi et al 2021), all of which can reflect the information about cardiac
structure and function. A study that applied PCG features to the identification of coronary artery disease could
serve as an inspiration for the presentation of multi-domain feature analysis (Schmidt et al 2015).
Complementary ensemble empirical mode decomposition (CEEMD) (Yeh et al 2010), as a fully data-driven
technique, was designed to perform multi-scale decomposition of signals into their natural scale components.
The tunable-Q wavelet transform (TQWT) is a powerful multi-scale resolution technique that is well suited for
deeply understanding the complex features of biomedical signals (Selesnick 2011). Theoretically, the use of a
combination of multi-domain and multi-scale feature analysis methodologies may potentially improve the
classification performance of machine learning models. We hypothesized that combining multi-domain and
multi-scale heart sound features could provide deep insight into the feature representations of heart sound
aberrations that might occur in different stages of CHF and improve the recognition of the corresponding
multifarious signal patterns using machine learning to substantially facilitate auxiliary ACC/AHA HF stage
classification. Therefore, this paper proposed to use CEEMD and TQWT to construct self-adaptive heart sound
sub-sequences and multi-level heart sound sub-band signals for multi-scale feature extraction, respectively.
Feature selection was performed using the least absolute shrinkage and selection operator (LASSO), and the
selected multi-scale and multi-domain features were fed into a machine learning classifier for ACC/AHA HF
stage classification. Finally, mainstream machine learning classifiers such as least-squares support vector
machine (LS-SVM), deep belief networks (DBN) and random forest (RF) were used and compared to determine
the optimal model.

The remainder of this paper is organized as follows. Descriptions of the methods used in data acquisition,
preprocessing, multi-scale and multi-domain feature extraction, feature selection and classification model
construction are introduced in section 2. Section 3 provides a detailed presentation of the experimental results.
Section 4 presents the relevant discussion. Finally, the conclusion and future directions are summarized in
section 5.

2. Method and materials

The framework for this study is based on the development of a multi-scale and multi-domain heart sound
feature-based machine learning model for ACC/AHA HF stage classification, as shown in figure 1.
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Figure 1. The framework of this study for ACC/AHA heart failure stage classification.

2.1. Study population

Heart sound data were obtained from two institutions such as the First Affiliated Hospital and the University-
Town Hospital of Chongging Medical University. Ethical approval for this study was obtained from both
institutions. A total of 275 subjects, including 51 healthy volunteers and 224 patients with CHF, were recruited
for this study. All the subjects were instructed to review and sign informed consent forms. The patients with
CHF were confirmed and then grouped into four stages of HF such as stage A (at risk for HF), stage B (pre-HF),
stage C (symptomatic HF) and stage D (advanced HF) by experienced cardiologists according to the most
recently universal definition and classification of HF (Bozkurt et al 2021). Heart sound signal was recorded at the
apex position of each subject in the resting state using a multichannel physiological measurement instrument
(RM-6240BD, Chengdu Instrument Factory, China) with an electronic transducer (XJ102) at a sampling
frequency of 8000 Hz. To enlarge the sample size for machine learning, each 5 min recording was cropped to 5
non-overlapping frame signals with a length of 20 s. Consequently, a total of 1375 samples were generated. The
demographic information of the experimental data and the universal definition of HF stages are summarized in
table 1.

2.2. Preprocessing
Before feature extraction, preprocessing was performed to obtain clean and normalized heart sound signals via
the following sequence:

(1) Noise cancellation: A fourth-order adaptive finite impulse response notch filter was used for 50 Hz power
line interference. The low-frequency noise and baseline drift were then removed by a high-pass Butterworth
filter with a cut-off frequency of 10 Hz. Finally, multi-level singular value decomposition and compressed
sensing were applied to remove white noise and environmental noise from the heart sound signals (Zheng
etal2017).

(2) Normalization: Z-score normalization was performed for each signal.

(3) Segmentation: An efficient and specialized hidden semi-Markov model segmentation algorithm was used to
segment and crop each heart sound signal into non-overlapping frame signals (Springer et al 2015).

(4) Resampling: The frequency components of heart sounds range from 10 to 1000 Hz, and the sampling
frequency was reset to 2000 Hz to reduce the computational complexity.

2.3. Self-adaptive heart sound sub-sequence construction

To perform the frequency-domain and nonlinear analysis of heart sound sub-sequences, CEEMD was used to
decompose the input heart sound signals into several intrinsic mode function (IMF) components, and the IMF
that showed the highest correlation with the original signal was then selected as the heart sound sub-sequence.
CEEMD overcomes the disadvantages of incomplete decomposition derived from empirical mode
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Table 1. Basic characteristics of the sample data.

Type Universal definition Number of subjects Age (year) Number of signals

Healthy subject No cardiovascular diseases 51 47 (24-57) 255

HF Stage A Athigh risk for HF but no structural heart 42 58 (42-69) 210
disease or symptoms of HF

HF Stage B Asymptomatic structural heart disease or 56 61 (48-72) 280

abnormal cardiac function without
symptoms or signs of HF

HEF Stage C Structural and/or functional cardiac 75 62 (56-75) 375
abnormality with symptoms of HF
HF Stage D Refractory HF with advanced symptoms that 51 64 (58-79) 255

do not get better with treatment

decomposition by adding random Gaussian white noise to the original signals (Yeh et al 2010). To accomplish
this, N pairs of positive and negative Gaussian white noise were added to the original heart sound signal as

follows:
M| _J1 1 S(n)
[Mz] - [1 —1][W(n)]’ @

where W (1) denotes the Gaussian white noise, and M, and M, are the sums of the original signals with positive
and negative Gaussian white noise, respectively.

CEEMD was applied to the target signal, and each signal yielded a set of IMF components; the ith
component of the jth IMF is expressed as IMF;;.

The results of each IMF were obtained after averaging the overall ensemble. This step can be formulated as:

2N
> IME;(n). )

IMF;(n) = L
2N S

Hence, the final CEEMD result of S(r) can be denoted as:

K
S(n) = > IMFj(n) + res. (3)
=1

In this study, the standard deviation of the Gaussian white noise was specified as the standard deviation of
the original signal multiplied by 0.2. Pearson’s correlation analysis was used to evaluate the correlation between
each IMF and the original signal, and IMFs with correlation coefficients greater than 0.2 were selected as heart
sound sub-sequences. Herein, the first four IMFs (IMF1-4) were used to constitute the heart sound sub-
sequernces.

2.4. Multi-level heart sound sub-band signal construction

In this study, the utilization of heart sound sub-band features for HF stage classification was proposed. A crucial
step in this process is the decomposition of a heart sound signal into multi-level sub-band signals using TQWT,
which has the potential to aid in the analysis of oscillatory signals by tuning the Q-factor (Q), the redundancy
factor (r) and the number of decomposition levels (J) (Selesnick 2011). The non-rational transfer functions are
used to facilitate the implementation of TQWT filters in the frequency-domain. The multi-level TQWT
decomposition can be achieved by applying two-channel filter banks consisting of low-pass and high-pass filters
(Hp(w) and Hi(w)) periodically to the low-pass sub-band signals, where w is the angular frequency. Let us
consider a heart sound signal S (n) with a sampling rate f, at the Jthlevel decomposition; the low-pass and high-
pass sub-band signals, denoted by a’ (n) and d’ (n), respectively, are generated from low-pass and high-pass
filters denoted by H{"’ (w) and H (w), followed by a low-pass scaling operation  and a high-pass scaling
operation 3, respectively. Figure 2 shows the equivalent systems of the TQWT decomposition and the Jth level
decomposition of the input signal for the generation of the low-pass and high-pass sub-band signals. The
frequency responses of the low-pass filter H (w) and the high-pass filter H{’ (w) at the Jth level
decomposition are given by

J—1
H "y, <ot
};[0 ow/am, |w| < o7 @

0, dr<|w|l <7

H) (w) =




10P Publishing

Physiol. Meas. 43 (2022) 065002 Y Zheng et al

J low-pass scaling J I
/ HO (a)) —[ a‘] S ]_ a (}’l) __,!'||l|\ﬂu A
\r HIJ (a)) ‘ IlOW-pCa:j slcalinthigh-p;ss scaling]_' 4 (n) VAV
L J

Figure 2. Equivalent systems for low-pass and high-pass sub-band signals.

J-2
HO (@) = Hi(w/a/™Y }_:[0 Hy(w/a™, (1 — 3o 7 < |w| < oﬂf‘w) 5)
0, w € [—m, ]

where J € N.
Hy(w) and Hi(w) are defined in terms of 6 (w), which is the frequency response of the Dabuchies filter (Li
etal2019) with two vanishing moments

Ho(w) = Q(M), (1-B)7 < |w| < ar (6)
a+ -1

H(w) = H(M) (1-B)7 < |w| < ar @)
a+06-1

0(w) = %(1 + cos(w))(2 — cos(w)/?, |w| < . (8)

The reconstruction of input signal was achieved with the selected sub-bands by employing a filter bank
analogous to that employed during the decomposition stage. In terms of & and 3, the parameters r and Q are
expressed as

B

r= 9
T )
2-p
Q= ——. (10)
B
In the TQWT implementation, the Q-factor and r are pre-defined. Using these values, the scaling
parameters & and (3 are determined by the following relations:
a=1-2 an
r
2
f= . (12)
Q+1

The Q-factor controls the number of oscillations of the wavelet, and the redundancy factor regulates the
overlapping of the frequency responses. In this study, Q-factor = 2.4 and r = 3 were used. After the 6th TQWT
decomposition, the lowest frequency sub-band signal a®(n) and three high-pass sub-band signals d*>°(n) were
selected as heart sound sub-band signals.

2.5. Time-domain features

The time-domain features of heart sounds are the quantitative representations of morphological heart sound
waveform characteristics obtained by calculating the amplitudes, interval durations and amplitude or interval
ratios of heart sound components. The amplitude of the first heart sound is associated with the rate of change in
left ventricular pressure, which can represent the intensity of cardiac contractility, and the interval durations of
cardiac mechanical activities are associated with coronary blood flow reserve. Therefore, heart sound time-
domain features may be potentially helpful in the classification of HF stages for which the cardiac hemodynamic
parameters differ. In this study, 6 time-domain features were calculated, and the details are given in table 2.

2.6. Multi-scale frequency-domain features
The frequency characteristics of heart sound signals potentially reflect the information about myocardial
contraction, atrioventricular valve activity, and blood flow in the heart. The main frequencies of normal heart
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Table 2. The detail of time-domain features of heart sounds.

Feature sign Definition

S1/S2 The ratio of first heart sound amplitude to second
heart sound amplitude

D/S The ratio of diastolic duration to systolic duration

IntS1/D The ratio of S1 interval duration to diastolic
duration

IntS1/S The ratio of S1 interval duration to systolic duration

IntS2/D The ratio of S2 interval duration to diastolic
duration

IntS2/S The ratio of S2 interval duration to systolic duration

sounds range from 10 to 200 Hz, but a number of abnormal cardiac hemodynamic changes alter the frequency
components of heart sounds. High-frequency heart sounds whose dominant frequencies are approximately
400-800 Hz are regarded as heart murmurs. Except for the investigation of frequency-domain features, CEEMD
and TQWT decomposition were employed to construct the heart sound sub-sequences and sub-band signals
that could represent multi-scale information in different frequency ranges. We first calculated the energy
proportions of the low-frequency components of the heart sound signal below 200 Hz in total and then
calculated the energy proportions of different heart sound sub-sequences and sub-band signals in the total signal
using CEEMD and TQWT, respectively. These features were used to explore whether the spectral distributions
of the frequency components of the heart sounds differed among patients at different stages of HF and whether
they differed between patients with CHF and healthy subjects. In this study, 9 multi-scale frequency-domain
features were proposed, and they are described in table 3.

2.7. Multi-scale nonlinear features

Heart sound signals are derived from cardiac mechanical activity; because the heart is a typical nonlinear system,
the signals produced by its activity also have the properties of a nonlinear time series. Therefore, entropy-based
complexity analysis and fractal geometry-based self-similarity analysis were employed to reflect the changes in
the inherent characteristics that are correlated with nonlinear cardiac dynamics in patients in the different HF
stages. 18 multi-scale nonlinear features are listed in table 4.

2.7.1. Entropy-based complexity analysis

The sample entropy (SE) is the improved algorithm derived from the approximate entropy (Lake et al 2002), and
it offers a better measurement of entropy and is an efficient approach that reflects tiny changes in the complexity
of time series data. Because entropy is related to the rate of production of energy or information within a system,
the SE of heart sounds can be used to quantify the complexity of cardiac mechanical activity. It can be computed
using the following statistical estimation formula:

A

SampEn(m, r, N) = — In m(7) , 13)
B, (r)

where m and r represent the embedding dimension and the tolerance level, respectively. In our study, SE was

applied to the original heart sound signals, sub-sequences and sub-sub-band signals. The tolerance level r was

set to the 0.2-fold standard deviation of the sequence. The value of m was determined in terms of the Cao
algorithm (Cao 1997).

2.7.2. Fractal geometry based self-similarity analysis
The multifractal spectrum measures deviations in the fractal structure, which is composed of small and large
fluctuations within the time sequences (Falconer 1994). The multifractal spectrums of the original heart sound
signals, heart sound sub-sequences and sub-band signals were calculated using the multifractal detrended
fluctuation analysis (MF-DFA) approach, which gives the description of the variations and self-similarity within
fractal structures at different time scales (Ihlen 2012). The MF-DFA computation was performed as shown
below.

The fluctuation function can be described as follows:

1

E(s) = |- S F? o 14
() = EZ[ (Mg s (14)

Sy=1
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Table 3. The detail of multi-scale frequency-domain features of heart sounds

Feature sign

Definition

LF_EF
IMF1_EF
IMF2_EF
IMF3_EF
IMF4_EF
Subl_EF
Sub2_EF
Sub3_EF
Sub4_EF

The ratio of signal energy of heart sound below 200 Hz to that of the total signal

The ratio of signal energy of heart sound sub-sequence constructed by IMF1 to that of the total signal

The ratio of signal energy of heart sound sub-sequence constructed by IMF2 to that of the total signal

The ratio of signal energy of heart sound sub-sequence constructed by IMF3 to that of the total signal

The ratio of signal energy of heart sound sub-sequence constructed by IMF4 to that of the total signal

The ratio of signal energy of heart sound sub-band signal constructed by sub-band1 to that of the total signal
The ratio of signal energy of heart sound sub-band signal constructed by sub-band?2 to that of the total signal
The ratio of signal energy of heart sound sub-band signal constructed by sub-band3 to that of the total signal
The ratio of signal energy of heart sound sub-band signal constructed by sub-band4 to that of the total signal

Table 4. The detail of multi-scale nonlinear features of heart sounds.

Feature sign

Definition

SampEn
IMF1_SampEn
IMF2_SampEn
IMF3_SampEn
IMF4_SampEn
Subl_SampEn
Sub2_SampEn
Sub3_SampEn
Sub4_SampEn
MFPwidth
IMF1_MFPwidth
IMF2_MFPwidth
IMF3_MFPwidth
IMF4_MFPwidth
Subl_MFPwidth
Sub2_MFPwidth
Sub3_MFPwidth
Sub4_MFPwidth

Sample entropy of heart sound signal

Sample entropy of heart sound sub-sequence constructed by IMF1 after CEEMD

Sample entropy of heart sound sub-sequence constructed by IMF2 after CEEMD

Sample entropy of heart sound sub-sequence constructed by IMF3 after CEEMD

Sample entropy of heart sound sub-sequence constructed by IMF4 after CEEMD

Sample entropy of heart sound sub-band signal constructed by sub-band1 after TQWT

Sample entropy of heart sound sub-band signal constructed by sub-band2 after TQWT

Sample entropy of heart sound sub-band signal constructed by sub-band3 after TQWT

Sample entropy of heart sound sub-band signal constructed by sub-band4 after TQWT

Width of multifractal spectrum of heart sound signal

Width of multifractal spectrum of heart sound sub-sequence constructed by IMF1 after CEEMD
Width of multifractal spectrum of heart sound sub-sequence constructed by IMF2 after CEEMD
Width of multifractal spectrum of heart sound sub-sequence constructed by IMF3 after CEEMD
Width of multifractal spectrum of heart sound sub-sequence constructed by IMF4 after CEEMD
Width of multifractal spectrum of heart sound sub-band signal constructed by sub-band1 after TQWT
Width of multifractal spectrum of heart sound sub-band signal constructed by sub-band2 after TQWT
Width of multifractal spectrum of heart sound sub-band signal constructed by sub-band3 after TQWT
Width of multifractal spectrum of heart sound sub-band signal constructed by sub-band4 after TQWT

where s indicates the scale size of each segment, N; is the number of segments, and g represents a fluctuation
parameter that makes it possible to analyse fluctuations of different magnitudes.

The power law function estimates the scaling characteristics of fluctuation functions by calculating the log—
log graphs of F,(s) versus s for each value of g, as follows:

E(s) o< s"@, (15)

where h(q) is the generalized Hurst exponent. Finally, by applying the Legendre transform to h(g), we can
obtain the multifractal spectrum f («) o< « (figure 3). Here, we employ the multifractal spectrum width
(MFPwidth) as a nonlinear feature to quantify the multifractal nature of heart sound signals.

2.8. Feature selection

The LASSO was applied to feature selection (Yamada et al 2014). This operator applies L1 regularization process
and shrinks some irrelevant feature coefficients to zero to make it possible to perform variable selection from the
global features. Therefore, it helps increase the interpretability of the resulting machine learning model by
removing irrelevant feature variables that are not associated with the response variables; in this way, overfitting is
reduced. In this study, LASSO logistic regression was used for feature selection (Kang et al 2019), which imposes
a fixed upper bound on the sum of the absolute values of the model parameters by combining the advantages of
ridge regression and subset selection.

2.9. Machine learning model

The selected features were fed into a machine learning model for HF stage classification. This study compared
the performance of three typical machine learning approaches and chose the first-rank approach for
classification model construction.
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Figure 3. The illustration of multifractal spectrums for the heart sound signals from a healthy subject and from patients at different HF
stages.

2.9.1.LS-SVM

The LS-SVM, which avoids solving a quadratic programming problem with high computational complexity by
solving a group of linear equations, has emerged as a benchmark for solving small-sample classification
problems in the biomedical field (Van Gestel et al 2004). In this study, the Gaussian radial basis function was
employed as kernel function. During the calculation process, the values of kernel, penalty and tolerance
parameters were chosen empirically to achieve the optimal system performance, as shown in table 5. Since the
LS-SVM is a binary classifier, it solves multi-class classification problems by adopting one-against-all (OAA) and
one-against-one strategies. In this study, the OAA strategy was utilized to classify five classes of heart sound
signals.

2.9.2. Deep belief networks

ADBN, a probability generation model consisting of multiple hidden-layer neural networks, is constructed
using multiple restricted Boltzmann machines (RBMs) (Mohamed et al 2011), In this model, each hidden layer
of the subnetwork serves as the visible layer for the next layer. The DBN training process includes two stages:
pretraining and fine-tuning. First, the RBM performs the layer-by-layer greedy learning algorithm to adjust the
connection weight of the deep neural networks using contrastive divergence; in this process, maximum
likelihood estimation is applied for updating of weights (Hinton 2012). Fine-tuning is then performed using a
backpropagation (BP) algorithm to optimize the connection weights. The weight decay and sparsity penalty are
used to overcome the problem of overfitting during the training phase. In this study, cross entropy was used as
the cost function, and the softmax function was adopted at the top of the DBN model.

2.9.3. Random forest

Random forests are ensemble learning methods that operate by constructing a multitude of decision trees

(Pal 2005). They use feature randomness and are usually trained with the bagging method when building several
decision trees to try to create an uncorrelated forest of trees; the obtained results are then averaged. Each
individual tree relies on a random sample of appropriate values and is a separate classifier. When training the
nodes of each tree, the feature that is used is randomly selected from all features without replacement. Each tree
in the RF algorithm yields its own classification selection and thus votes for that class; the overall output of the
forest is the classification option with the most votes.

2.10. Performance evaluation

The overall dataset was categorized into different datasets via stratification and shuffling to ensure a similar
original distribution across the datasets. The heart sound samples from one patient were not included in the
different datasets. Overall, 30% of the data were selected randomly as an independent testing set, and the
remaining data were used as the training set for model construction via 5-fold cross validation. Stratification into
the training dataset was automatically performed without artificial intervention to avoid selection bias. A grid
search approach was used to identify the optimal parameters for each classifier. To minimize the perturbation
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Table 5. Hyperparameter optimization.

Classifier Parameters

LS-SVM Kernel function = RBF, Kernel parameter = 2, Penalty parameter = 80, Tolerance parameter = 0.001

DBN Number of depth neural network layer = 3, Number of units per layer = 100, Learning rate = 0.01, Epochs = 40.
RF Number of trees = 80, Max depth = 20, Seed = 1

problems encountered during feature selection and to examine the reproducibility of the experimental results,
we randomly assigned the data to a training or testing cohort 10 times. Subsequently, the model was
reconstructed and verified repeatedly. The classification performance of the models was evaluated using the area
under the curve (AUC). Confusion matrix-related metrics such as sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV) and accuracy were also calculated. The detailed parameter settings
for the used machine learning classifiers are listed in table 5.

2.11. Statistical analysis

The normality of all the continuous variables was assessed by the Shapiro—Wilk test to determine whether a
parametric or a nonparametric test for comparison of variables should be performed. For the analysis of each
heart sound feature, the Kruskal-Wallis test or one-way analysis of variance was performed, as appropriate, to
compare the differences among different CHF stages and the control group, and post hoc analysis with
Bonferroni correction was performed for both groups in the five-group case. The receiver operating
characteristic curve was obtained for each model by varying the classification probability threshold. The
differences among the AUC values yielded by the three models were assessed using the Delong test. All statistical
analyses were conducted with R 3.6.0 (http://www.R-project.org). The level of statistical significance was set at a
two-sided p value below 0.05.

3. Results

In our experiment, the preprocessing, feature extraction, and machine learning steps were implemented in
MATLAB 2015b (MathWorks, Natick, MA, USA). The proposed procedures were performed on a computer
workstation with a 3.70 GHz Intel Core i7-8700K CPU, a GeForce GTX 1080T1i (8G) GPU, 32 GB of RAM and a
64-bit Windows 10 operating system.

3.1. Multi-domain heart sound features among different HF stages

The time-domain features of heart sounds are presented in figures 4(A)—(F). Compared to those of healthy
subjects, depressed D/S, S1/S2, IntS1/S, and IntS2 /S were observed in the patients with CHF, and the values of
these parameters decreased gradually with the progression of HF from stage A to stage D. IntS1/D and IntS2/D
were found to be elevated in the patients with CHF, and they increased as HF gets worse. The variation trend of
the low-frequency energy fraction (LE_EF) of heart sounds from individuals with the healthy cardiac condition
to advanced HF is shown in figure 4(G). The LE_EF of heart sounds decreased as HF worsened. The nonlinear
analysis showed that the SE and multifractal spectrum width (Ac) of heart sounds were significantly higher in
the healthy group than in the CHF group (P = 0.015 and 0.023, respectively, figures 4(H)—(I)). The SEand A«
of heart sound signals have similar decreasing tendency with the progression of CHF, and they manifest the
greater values in stage A while show the smaller values in stage D. In the early stage of CHF (stages A or B), D/S,
$1/82,1IntS1/S, IntS2/S, LE_EF, SE and A« were found to be significantly higher than those in the advanced
stage of CHF (stage C or D) (all adjusted P < 0.05). There were no significant differences between stages A and B
in any of these parameters except for LF_EF and A« (adjusted P = 0.029 and 0.008, respectively).

3.2. Multi-scale heart sound features among different HF stages

The multi-scale frequency, complexity and self-similarity characteristics of the heart sound signals decomposed
from CEEMD and TQWT were explored. The energy fractions of IMF1 and IMF2 decreased, while those of
IMF3 and IMF4 increased from HF stages A to D, and the similar trend was found for the sub-band signals
(table 6). This indicated that the energy fraction of the heart sound signals in the early stage of CHF was mainly
concentrated in the low-frequency range (70-140 Hz), and the high-frequency components of the heart sound
signals tended to increase when CHF progressed to the end stage. The multi-scale SE and A« in each heart
sound sub-sequence and sub-band signal tended to decrease as the HF worsened from stages A to D, as shown in
figures 5 and 6. The SE and A« of sub-sequences and sub-band signals display smaller values in the advanced
stage of CHF than those in the early stage.
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Table 6. The signal energy fractions of heart sound sub-sequences and sub-band signals.

Control Stage Stage Stage Stage

(N = 255) A(N = 210) B(N = 280) C(N = 375) D (N = 255)

Sub-sequences IMF1_EF(%) 6.42 + 0.53 3.47 £ 0.15 3.82 £+ 0.49 3.14 £ 0.58 2.25 £ 0.54
IMF2_EF(%) 41.52 + 6.151 37.19 + 3.78 35.75 & 4.81 31.17 + 4.78 28.92 + 5.69

IMF3_EF(%) 23.62 £ 4.98 24.82 £ 3.49 25.39 £ 4.68 26.50 & 3.98 25.54 £ 7.43

IMF4_EF(%) 10.12 £ 2.11 14.13 + 2.86 16.34 &+ 3.14 17.55 & 3.62 19.96 & 3.79

Sub-bandsignals  Subl_EF(%) 5.87 £ 0.59 3.74 £ 0.36 3.45 £ 0.42 2.92 + 0.51 2.47 £+ 0.65
Sub2_EF(%) 37.82 £ 5.47 35.59 £ 4.18 33.58 £ 5.31 31.61 £ 4.68 29.12 £ 6.59

Sub3_EF(%) 23.67 £ 5.18 24.72 £ 4.69 26.31 & 7.68 28.50 £ 5.98 29.56 £ 7.49

Sub4_EF(%) 10.51 + 24.12 12.12 £ 3.69 1591 + 4.14 17.50 + 4.59 18.56 + 4.08

3.3. Comparison of the classification performance of different machine learning-based HF stage classifiers
To determine the most appropriate model for the classification of HF stages, three representative machine
learning classifiers such as LS-SVM, RF and DBN were used to automatically classify HF into four stages. The
optimized hyperparameters of the three machine learning classifiers are listed in table 5; they were obtained via a
grid search approach performed during the training process. The classification results of these three models on
the training, validation, and testing sets are illustrated by the confusion matrices shown in figure 7. Table 7
presents the performance of the LS-SVM model in terms of automated HF stage classification, where each
metric was calculated by averaging the results obtained in the 10 different runs completed for the 10 random
splits of the heart sound data. The LS-SVM achieved an accuracy of 0.820 (95% CI: 0.734-0.925) and
outperformed both the RF with an accuracy of 0.795 (95% CI: 0.687-0.902) and the DBN with an accuracy of
0.743 (95% CI: 0.625-0.871) on the HF stage classification task, which had sensitivity values ranging from 0.806
t0 0.841 and specificity values ranging from 0.939 to 0.975 for the five classes of heart sounds.
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3.4. Use of a combination of multi-scale and multi-domain heart sound features

The multi-domain features extracted from the original PCG signals, the multi-scale features extracted from the
heart sound sub-sequences and sub-band signals decomposed from the PCG signals, and a combination of both
were fed into the LS-SVM model to obtain the corresponding classification results. As shown in figure 8, when
the multi-scale features were used, the classification performance of the model was better than that achieved
using the multi-domain features alone. The best result was obtained by using the combined features, and the
accuracy increased from 0.741 to 0.820.

4, Discussion

In this study, we explored the changes in the time-domain, frequency-domain and nonlinear features of PCG
signals along with the progression of HF and constructed an LS-SVM based machine learning model for the
classification of HF stages using multi-scale and multi-domain heart sound features. Favourable classification
performance was achieved in that the accuracy reached 0.871 (95% CI: 0.814—0.968) on the training set, 0.836
(95% CI: 0.768-0.914) on the validation set and 0.820 (95% CI: 0.734-0.925) on the testing set. Machine
learning models that routinely combine clinical variables (Su et al 2014) or ECG features (Li et al 2019) have the
potential to classify HF stages when varying degrees of cardiac mechanical dysfunction were detected. Since
heart sounds are the acoustic vibrations that are produced during the mechanical processes of the cardiac cycle,
they can be used for heart abnormality monitoring. Furthermore, PCG is noninvasive, resulting in convenience
and time savings. When combined with machine learning, this technique has the potential to serve as a cost-
effective auxiliary screening tool for HF stage classification and may offer a novel screening strategy for the
patients who are at high risk of CHF or in its early stage.
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Figure 7. Confusion matrix for the classification of ACC/AHA heart failure stages using LS-SVM on the (A) training, (B) validation

Table 7. The performance for ACC/AHA HF stage classification using LS-SVM on the training, validation and testing sets.

Sensitivity Specificity F1 PPV NPV Accuracy

Training set Control ~ 0.910 & 0.035  0.983 4= 0.034 0916 £ 0.044  0.924 £ 0.064  0.980 % 0.069 0.871(95% CI:
0.814-0.968)

A 0.876 & 0.023  0.965 £+ 0.028  0.847 £ 0.062  0.820 £ 0.071  0.977 £+ 0.057

B 0.850 & 0.041  0.957 4+ 0.053  0.842 £ 0.028  0.834 £ 0.059  0.962 £ 0.052

C 0.845 £+ 0.052  0.965 &+ 0.047  0.871 £ 0.036  0.900 £ 0.073  0.943 £ 0.069

D 0.891 £ 0.043  0.969 £+ 0.062  0.880 £ 0.041  0.869 £ 0.069  0.975 £ 0.061
Validationset ~ Control ~ 0.901 £ 0.039  0.952 & 0.030  0.883 4 0.059  0.888 + 0.069  0.972 + 0.083 0.836 (95% CI:
0.768-0.914)

A 0.877 & 0.028  0.948 = 0.087  0.831 £ 0.038  0.802 £ 0.074  0.975 % 0.092

B 0.830 £ 0.053  0.913 4+ 0.049  0.792 £ 0.047  0.785 £ 0.058  0.947 & 0.074

C 0.857 £ 0.047  0.923 + 0.063  0.840 £ 0.075  0.843 £ 0.036  0.941 £ 0.067

D 0.828 & 0.019  0.955 £ 0.062  0.839 £ 0.082  0.869 £ 0.047  0.957 & 0.056
Testing set Control ~ 0.841 £+ 0.035  0.975 4+ 0.048  0.861 £ 0.046  0.885 £ 0.019  0.962 + 0.074 0.820 (95% CI:
0.734-0.925)

A 0.826 + 0.028  0.958 £ 0.065  0.802 £ 0.074  0.779 £ 0.028  0.967 % 0.068

B 0.826 & 0.057  0.939 4+ 0.069  0.800 £ 0.071  0.776 £ 0.093  0.953 £ 0.065

C 0.806 & 0.062  0.946 &+ 0.074  0.828 £ 0.066  0.852 £ 0.074  0.928 £ 0.059

D 0.807 & 0.049  0.955 £ 0.057  0.805 £ 0.057  0.803 £ 0.038  0.956 % 0.083

Studies of the relationship between heart sounds and cardiac contractility have inspired a new field of
research in which cardiac inotropic analysis is used as an approach to detect and measure CHF (Xiao et al 2000,
Shah and Michaels 2006, Tang et al 2017, Thakur et al 2017). We have previously proven the effectiveness of a
heart sound-based machine learning model for differentiating between CHF and healthy people (Zheng et al
2015), and for the identification of HF subtypes such as HF with reduced ejection fraction (HFrEF) and HF with
preserved ejection fraction (HFpEF) (Gao et al 2020). However, to our knowledge, no previous study has sought
to quantitatively classify the ACC/AHA HF stages using heart sounds, specifically in terms of utilizing multi-
scale and multi-domain heart sound features. In the present work, we moved forward to first investigate the
variation in heart sound features along with the progression of HF from stage A to stage D and then constructed a
multi-scale and multi-domain heart sound feature-based computer-aided diagnosis model for HF stage
classification using machine learning.

Previous studies have shown that D/S can be used to noninvasively assess cardiac reserve (Cheng et al 2021).
Depressed D/S was observed as CHF progressed through the four stages, which are termed stages A to D. This is
because of the abnormal prolongation of the systolic duration or the shortening of the diastolic duration caused
by compromised cardiac filling and function abnormality when CHF occurs (Xu et al 2018). This finding is also
in accordance with the evidence that the most important aspect of cardiac dysfunction in HF patients is not the
depressed cardiac performance observed in the basal resting state but rather the loss of cardiac reserve
(Tan 1986). HF represents an impairment and failure of cardiac contractility and states that may result in systolic
dysfunction as well as alow ejection fraction (Bloom et al 2017). Many studies have shown that HF can cause
diminished cardiomyocyte contractility at the cellular level, which is manifested as decreased cardiac
contractility in the patients with CHF (Norman et al 2011, Borlaug 2014). In addition, the strength of heart
sounds has been shown to be related to the rate of change of left ventricular pressure and cardiac contractility
(Hansen et al 1989, Tang et al 2013). This can explain the gradual decrease in S1/S2 with the progression of CHF.
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those values in different groups on the testing set where each metric was calculated by averaging the results obtained in the 10 different
runs.

We found that the signal energy of the low-frequency components of heart sounds decreased as HF
worsened. Since most of the energy in normal heart sound signals is concentrated in the low-frequency spectrum
between 10 and 150 Hz (Safara et al 2013), an increase in the high-frequency components of heart sound signals
indicates the occurrence of heart murmurs (Bozkurt et al 2018) that result from the impairment of the cardiac
structure, such as aortic insufficiency and mitral regurgitation (Choi et al 2011), when HF progresses
significantly. The decreases in the entropy and MFPwidth indicate that the complexity and self-similarity of the
heart sound signals have decreased, respectively (Zheng and Guo 2017), and this suggests that decreased chaotic
characteristics in cardiac mechanical activity can be observed. This is consistent with the changes in cardiac
electrophysiological signals, such as electrocardiogram (ECG) signals (Turcott and Teich 1996, Jahmunah et al
2019).

In this study, a novel exploration of the changes that occur in the multi-scale information of heart sound
signals as HF progressed from stages A to D was presented. We used CEEMD and TQWT to generate heart
sound sub-sequences and sub-band signals with different frequency components and explored the changes in
frequency, entropy and multifractal characteristics of those as HF progressed from stage A to stage D. The results
indicate that the changes in multi-scale features obtained from heart sound sub-sequences and sub-band signals
occur before those in conventional features when HF are detectable. The classification of multi-scale and multi-
domain heart sound features therefore has the potential to facilitate early detection of subclinical CHF (stages A
and B) and to provide information that can help physicians in their clinical decision-making regarding the
initiation of direct and indirect treatment interventions.

The use of heart sound classification in the noninvasive diagnosis of cardiac diseases such as coronary heart
disease (Liu et al 2021, Winther et al 2021) and congenital heart disease (Kui et al 2021, Lv et al 2021) has been
widely explored. Focusing on the application of heart sound analysis for CHF has been shown to be efficient in
terms of distinguishing healthy individuals from the patients with CHF and differentiating between HFpEF and
HFrEF (Zheng et al 2015, Liu et al 2019). In contrast to those studies, we proposed to extract multi-scale heart
sound features using CEEMD and TQWT and combining those features with other multi-domain heart sound
features to construct an LS-SVM based machine learning model for ACC/AHA HF stage classification.

This study also has several limitations. First, it was a prospective study with a relatively small study cohort,
and future studies should collect external validation data from different centres to enhance the generalization of
the constructed machine learning model. Second, the clinical application of the proposed approach should be
further validated using larger prospective studies with multicentric data. Third, although the heart is an
electromechanical pump, heart sounds provide information on cardiac mechanical activity but not
electrophysiological information, and therefore, the use of multi-modal cardiac physiological signals such as a
combination of heart sound and ECG signals should be considered as a way of obtaining more comprehensive
information on the global heart system. Fourth, a subgroup analysis should be performed.

13



10P Publishing

Physiol. Meas. 43 (2022) 065002 Y Zheng et al

5. Conclusion

This study demonstrates that heart sound signals represent a valuable source of information regarding the
severity of CHF and the heart sound features change as CHF progresses. The LS-SVM based machine learning
model using a combination of multi-scale and multi-domain heart sound features described in this work can be
used as a potentially noninvasive method for ACC/AHA HF stage classification and may offer a promising and
feasible way to improve clinical management and therapeutic decisions on the patients with CHF.
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