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Abstract
Objective.Heart sounds can reflect detrimental changes in cardiacmechanical activity that are
commonpathological characteristics of chronic heart failure (CHF). TheACC/AHAheart failure
(HF) stage classification is essential for clinical decision-making and themanagement of CHF.Herein,
amachine learningmodel thatmakes use ofmulti-scale andmulti-domain heart sound features was
proposed to provide an objective aid for ACC/AHAHF stage classification.Approach.Adataset
containing phonocardiogram (PCG) signals from275 subjects was obtained from twomedical
institutions and used in this study. Complementary ensemble empiricalmode decomposition and
tunable-Qwavelet transformwere used to construct self-adaptive sub-sequences andmulti-level sub-
band signals for PCG signals. Time-domain, frequency-domain and nonlinear feature extractionwere
then applied to the original PCG signal, heart sound sub-sequences and sub-band signals to construct
multi-scale andmulti-domain heart sound features. The features selected via the least absolute
shrinkage and selection operator were fed into amachine learning classifier for ACC/AHAHF stage
classification. Finally,mainstreammachine learning classifiers, including least-squares support vector
machine (LS-SVM), deep belief network (DBN) and random forest (RF), were compared to determine
the optimalmodel.Main results. The results showed that the LS-SVM,which utilized a combination of
multi-scale andmulti-domain features, achieved better classification performance than theDBN and
RFusingmulti-scale or/andmulti-domain features alone or together, with average sensitivity,
specificity, and accuracy of 0.821, 0.955 and 0.820 on the testing set, respectively. Significance.PCG
signal analysis provides efficientmeasurement information regarding CHF severity and is a promising
noninvasivemethod for ACC/AHAHF stage classification.

1. Introduction

Chronic heart failure (CHF) is amultietiological disease that can occurwhen cardiac output is insufficient for
satisfying the needs of the body, and is the predominant clinical presentation in the typical end-stage ofmultiple
cardiovascular diseases. According to theAmericanHeart Association/AmericanCollege of Cardiology (ACC/
AHA) guideline (Yancy et al 2017), CHF can be classified into four stages (stages A, B, C andD) ranging from
developing heart failure (HF)without current or prior symptoms to advancedHF. The progression of CHF can
result in irreversible structural or functional cardiac tissue impairment. Once symptoms develop, stage CHF is
present andwill never revert to stage B again (Ren et al 2020). Because early detection of CHFmakes timely
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intervention possible and delays the progression of CHF, in addition to be beneficial for improving long-term
prognosis (Goldberg and Jessup 2006), it is necessary to develop a convenient screening approach for the early
identification of CHF. Accurate classification of ACC/AHAHF stages plays an important role in clinical practice
(Gong et al 2017), but current guidelines do not provide objective classification strategies forHF stages. Thus,
development of a cost-effective approach that supports automaticHF stage classification is urgently needed for
establishing a screening of CHF, evaluating prognosis, and guiding therapy in clinical cardiology.

Symptoms and signs ofHF are neither sensitive nor specific in early stage, whichmakes the clinical diagnosis
ofHF staging difficult and challenging (Ammar et al 2007). Heart sounds are the direct result of cardiac
mechanical events, and cardiac auscultation allows practitioners to evaluate cardiac conditions efficiently and
provides primary diagnostic clues for evaluating cardiac condition prior to performing a special cardiac
examination.However, the use of cardiac auscultation is limited by imprecise judgements and human error that
may occur due to young clinicians’ inexperience. A phonocardiogram (PCG) is a high-fidelity digital record of
heart sound signal acquired using an electronic auscultation device on the chest. Advancedmachine learning
techniques have been recently employed asmainstream approaches for the computer-aided diagnosis of
cardiovascular diseases based onmeaningful feature extraction fromPCG signals (Dwivedi et al 2018, Alfaras
et al 2019, Das et al 2020, Li et al 2020a, 2020b). Recently,many studies have focused on the automatic
recognition of abnormalities based on heart sound classification (Eslamizadeh andBarati 2017,Whitaker et al
2017, Zhang et al 2017, Yadav et al 2020). Some researchers have applied PCG characteristics to the identification
of heart valvular diseases (Tang et al 2018, Cheng et al 2020).Moreover, several studies have usedmulti-modal
feature fusion for the detection of coronary heart disease (Winther et al 2018, Li et al 2020a). In contrast, the
number of studies inwhich heart sounds are used for the detection of CHF is relatively small. Heart sound
analysis has been shown potential in the differential diagnosis of CHF and the classification ofHF phenotypes
(Zheng et al 2015, Liu et al 2019). To our knowledge,machine learning classifiers built on PCG features have not
been used previously in ACC/AHAHF stage classification. Furthermore, the relationship between heart sound
features and specificHF stages is unknown, andwhether changes in heart sound features reflect the severity of
CHF and how these changes are related to the progression of CHF are also unknown.

Heart sound feature extraction is the process of unveiling hidden characteristic information about a PCG
signal in different domains, including time (Whitaker et al 2017), frequency (Khan et al 2020), time-frequency
(Lee et al 1999), and nonlinear features (Saeedi et al 2021), all of which can reflect the information about cardiac
structure and function. A study that applied PCG features to the identification of coronary artery disease could
serve as an inspiration for the presentation ofmulti-domain feature analysis (Schmidt et al 2015).
Complementary ensemble empiricalmode decomposition (CEEMD) (Yeh et al 2010), as a fully data-driven
technique, was designed to performmulti-scale decomposition of signals into their natural scale components.
The tunable-Qwavelet transform (TQWT) is a powerfulmulti-scale resolution technique that is well suited for
deeply understanding the complex features of biomedical signals (Selesnick 2011). Theoretically, the use of a
combination ofmulti-domain andmulti-scale feature analysismethodologiesmay potentially improve the
classification performance ofmachine learningmodels.We hypothesized that combiningmulti-domain and
multi-scale heart sound features could provide deep insight into the feature representations of heart sound
aberrations thatmight occur in different stages of CHF and improve the recognition of the corresponding
multifarious signal patterns usingmachine learning to substantially facilitate auxiliary ACC/AHAHF stage
classification. Therefore, this paper proposed to use CEEMDandTQWT to construct self-adaptive heart sound
sub-sequences andmulti-level heart sound sub-band signals formulti-scale feature extraction, respectively.
Feature selectionwas performed using the least absolute shrinkage and selection operator (LASSO), and the
selectedmulti-scale andmulti-domain features were fed into amachine learning classifier for ACC/AHAHF
stage classification. Finally,mainstreammachine learning classifiers such as least-squares support vector
machine (LS-SVM), deep belief networks (DBN) and random forest (RF)were used and compared to determine
the optimalmodel.

The remainder of this paper is organized as follows. Descriptions of themethods used in data acquisition,
preprocessing,multi-scale andmulti-domain feature extraction, feature selection and classificationmodel
construction are introduced in section 2. Section 3 provides a detailed presentation of the experimental results.
Section 4 presents the relevant discussion. Finally, the conclusion and future directions are summarized in
section 5.

2.Method andmaterials

The framework for this study is based on the development of amulti-scale andmulti-domain heart sound
feature-basedmachine learningmodel for ACC/AHAHF stage classification, as shown infigure 1.
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2.1. Study population
Heart sound datawere obtained from two institutions such as the First AffiliatedHospital and theUniversity-
TownHospital of ChongqingMedical University. Ethical approval for this studywas obtained fromboth
institutions. A total of 275 subjects, including 51 healthy volunteers and 224 patients withCHF,were recruited
for this study. All the subjects were instructed to review and sign informed consent forms. The patients with
CHFwere confirmed and then grouped into four stages ofHF such as stage A (at risk forHF), stage B (pre-HF),
stageC (symptomaticHF) and stageD (advancedHF) by experienced cardiologists according to themost
recently universal definition and classification ofHF (Bozkurt et al 2021). Heart sound signal was recorded at the
apex position of each subject in the resting state using amultichannel physiologicalmeasurement instrument
(RM-6240BD, Chengdu Instrument Factory, China)with an electronic transducer (XJ102) at a sampling
frequency of 8000Hz. To enlarge the sample size formachine learning, each 5min recordingwas cropped to 5
non-overlapping frame signals with a length of 20 s. Consequently, a total of 1375 samples were generated. The
demographic information of the experimental data and the universal definition ofHF stages are summarized in
table 1. 

2.2. Preprocessing
Before feature extraction, preprocessing was performed to obtain clean and normalized heart sound signals via
the following sequence:

(1) Noise cancellation: A fourth-order adaptive finite impulse response notch filter was used for 50 Hz power
line interference. The low-frequency noise and baseline drift were then removed by a high-pass Butterworth
filter with a cut-off frequency of 10Hz. Finally,multi-level singular value decomposition and compressed
sensingwere applied to removewhite noise and environmental noise from the heart sound signals (Zheng
et al 2017).

(2) Normalization: Z-score normalizationwas performed for each signal.

(3) Segmentation: An efficient and specialized hidden semi-Markovmodel segmentation algorithmwas used to
segment and crop each heart sound signal into non-overlapping frame signals (Springer et al 2015).

(4) Resampling: The frequency components of heart sounds range from 10 to 1000 Hz, and the sampling
frequencywas reset to 2000Hz to reduce the computational complexity.

2.3. Self-adaptive heart sound sub-sequence construction
Toperform the frequency-domain and nonlinear analysis of heart sound sub-sequences, CEEMDwas used to
decompose the input heart sound signals into several intrinsicmode function (IMF) components, and the IMF
that showed the highest correlationwith the original signal was then selected as the heart sound sub-sequence.
CEEMDovercomes the disadvantages of incomplete decomposition derived from empiricalmode

Figure 1.The framework of this study for ACC/AHAheart failure stage classification.
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decomposition by adding randomGaussianwhite noise to the original signals (Yeh et al 2010). To accomplish
this, N pairs of positive and negativeGaussianwhite noise were added to the original heart sound signal as
follows:
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whereW n( ) denotes theGaussianwhite noise, and M1 and M2 are the sums of the original signals with positive
and negativeGaussianwhite noise, respectively.

CEEMDwas applied to the target signal, and each signal yielded a set of IMF components; the ith
component of the jth IMF is expressed as IMF .ij

The results of each IMFwere obtained after averaging the overall ensemble. This step can be formulated as:
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In this study, the standard deviation of theGaussianwhite noise was specified as the standard deviation of
the original signalmultiplied by 0.2. Pearson’s correlation analysis was used to evaluate the correlation between
each IMF and the original signal, and IMFswith correlation coefficients greater than 0.2were selected as heart
sound sub-sequences. Herein, the first four IMFs (IMF1-4)were used to constitute the heart sound sub-
sequences.

2.4.Multi-level heart sound sub-band signal construction
In this study, the utilization of heart sound sub-band features forHF stage classificationwas proposed. A crucial
step in this process is the decomposition of a heart sound signal intomulti-level sub-band signals using TQWT,
which has the potential to aid in the analysis of oscillatory signals by tuning theQ-factor (Q), the redundancy
factor (r) and the number of decomposition levels (J ) (Selesnick 2011). The non-rational transfer functions are
used to facilitate the implementation of TQWTfilters in the frequency-domain. Themulti-level TQWT
decomposition can be achieved by applying two-channel filter banks consisting of low-pass and high-pass filters
(H0 w( ) and H1 w( )) periodically to the low-pass sub-band signals, where w is the angular frequency. Let us
consider a heart sound signal S n( )with a sampling rate fs at the J th level decomposition; the low-pass and high-
pass sub-band signals, denoted by a nJ ( ) and d n ,J ( ) respectively, are generated from low-pass and high-pass
filters denoted by H J

0 w( )( ) and H ,J
1 w( )( ) followed by a low-pass scaling operation a and a high-pass scaling

operation ,b respectively. Figure 2 shows the equivalent systems of the TQWTdecomposition and the J th level
decomposition of the input signal for the generation of the low-pass and high-pass sub-band signals. The
frequency responses of the low-passfilter H J

0 w( )( ) and the high-pass filter H J
1 w( )( ) at the J th level

decomposition are given by
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Table 1.Basic characteristics of the sample data.

Type Universal definition Number of subjects Age (year) Number of signals

Healthy subject No cardiovascular diseases 51 47 (24–57) 255

HF Stage A At high risk forHF but no structural heart

disease or symptoms ofHF

42 58 (42–69) 210

HF Stage B Asymptomatic structural heart disease or

abnormal cardiac functionwithout

symptoms or signs ofHF

56 61 (48–72) 280

HF StageC Structural and/or functional cardiac

abnormalitywith symptoms ofHF

75 62 (56–75) 375

HF StageD RefractoryHFwith advanced symptoms that

do not get better with treatment

51 64 (58–79) 255
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where J .Î
H0 w( ) and H1 w( ) are defined in terms of ,q w( ) which is the frequency response of theDabuchiesfilter (Li

et al 2019)with two vanishingmoments
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The reconstruction of input signal was achievedwith the selected sub-bands by employing a filter bank
analogous to that employed during the decomposition stage. In terms of a and ,b the parameters r and Q are
expressed as

r
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9
b
a

=
-
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In the TQWT implementation, theQ-factor and r are pre-defined.Using these values, the scaling
parameters a and b are determined by the following relations:

r
1 11a

b
= - ( )

Q

2

1
. 12b =

+
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TheQ-factor controls the number of oscillations of thewavelet, and the redundancy factor regulates the
overlapping of the frequency responses. In this study,Q-factor=2.4 and r =3were used. After the 6th TQWT
decomposition, the lowest frequency sub-band signal a n6( ) and three high-pass sub-band signals d n4,5,6( )were
selected as heart sound sub-band signals.

2.5. Time-domain features
The time-domain features of heart sounds are the quantitative representations ofmorphological heart sound
waveform characteristics obtained by calculating the amplitudes, interval durations and amplitude or interval
ratios of heart sound components. The amplitude of the first heart sound is associatedwith the rate of change in
left ventricular pressure, which can represent the intensity of cardiac contractility, and the interval durations of
cardiacmechanical activities are associatedwith coronary blood flow reserve. Therefore, heart sound time-
domain featuresmay be potentially helpful in the classification ofHF stages for which the cardiac hemodynamic
parameters differ. In this study, 6 time-domain features were calculated, and the details are given in table 2.

2.6.Multi-scale frequency-domain features
The frequency characteristics of heart sound signals potentially reflect the information aboutmyocardial
contraction, atrioventricular valve activity, and blood flow in the heart. Themain frequencies of normal heart

Figure 2.Equivalent systems for low-pass and high-pass sub-band signals.
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sounds range from10 to 200Hz, but a number of abnormal cardiac hemodynamic changes alter the frequency
components of heart sounds. High-frequency heart soundswhose dominant frequencies are approximately
400–800Hz are regarded as heartmurmurs. Except for the investigation of frequency-domain features, CEEMD
andTQWTdecompositionwere employed to construct the heart sound sub-sequences and sub-band signals
that could representmulti-scale information in different frequency ranges.Wefirst calculated the energy
proportions of the low-frequency components of the heart sound signal below 200Hz in total and then
calculated the energy proportions of different heart sound sub-sequences and sub-band signals in the total signal
usingCEEMDandTQWT, respectively. These features were used to explore whether the spectral distributions
of the frequency components of the heart sounds differed among patients at different stages ofHF andwhether
they differed between patients with CHF and healthy subjects. In this study, 9multi-scale frequency-domain
features were proposed, and they are described in table 3.

2.7.Multi-scale nonlinear features
Heart sound signals are derived from cardiacmechanical activity; because the heart is a typical nonlinear system,
the signals produced by its activity also have the properties of a nonlinear time series. Therefore, entropy-based
complexity analysis and fractal geometry-based self-similarity analysis were employed to reflect the changes in
the inherent characteristics that are correlatedwith nonlinear cardiac dynamics in patients in the differentHF
stages. 18multi-scale nonlinear features are listed in table 4.

2.7.1. Entropy-based complexity analysis
The sample entropy (SE) is the improved algorithmderived from the approximate entropy (Lake et al 2002), and
it offers a bettermeasurement of entropy and is an efficient approach that reflects tiny changes in the complexity
of time series data. Because entropy is related to the rate of production of energy or informationwithin a system,
the SE of heart sounds can be used to quantify the complexity of cardiacmechanical activity. It can be computed
using the following statistical estimation formula:

SampEn m r N
A r

B r
, , ln , 13m

m

= - ⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )
( )

( )

where m and r represent the embedding dimension and the tolerance level, respectively. In our study, SEwas
applied to the original heart sound signals, sub-sequences and sub-sub-band signals. The tolerance level r was
set to the 0.2-fold standard deviation of the sequence. The value of m was determined in terms of theCao
algorithm (Cao 1997).

2.7.2. Fractal geometry based self-similarity analysis
Themultifractal spectrummeasures deviations in the fractal structure, which is composed of small and large
fluctuationswithin the time sequences (Falconer 1994). Themultifractal spectrums of the original heart sound
signals, heart sound sub-sequences and sub-band signals were calculated using themultifractal detrended
fluctuation analysis (MF-DFA) approach, which gives the description of the variations and self-similarity within
fractal structures at different time scales (Ihlen 2012). TheMF-DFA computationwas performed as shown
below.

Thefluctuation function can be described as follows:

F s
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F s v
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2
, , 14q
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N q q

1

2
2 2

1
s

åº
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Table 2.The detail of time-domain features of heart sounds.

Feature sign Definition

S1/S2 The ratio offirst heart sound amplitude to second

heart sound amplitude

D/S The ratio of diastolic duration to systolic duration

IntS1/D The ratio of S1 interval duration to diastolic

duration

IntS1/S The ratio of S1 interval duration to systolic duration

IntS2/D The ratio of S2 interval duration to diastolic

duration

IntS2/S The ratio of S2 interval duration to systolic duration
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where s indicates the scale size of each segment, Ns is the number of segments, and q represents afluctuation
parameter thatmakes it possible to analyse fluctuations of differentmagnitudes.

The power law function estimates the scaling characteristics offluctuation functions by calculating the log–
log graphs of F sq ( ) versus s for each value of q, as follows:

F s s , 15q
h qµ( ) ( )( )

where h q( ) is the generalizedHurst exponent. Finally, by applying the Legendre transform to h q ,( ) we can
obtain themultifractal spectrum f a aµ( ) (figure 3). Here, we employ themultifractal spectrumwidth
(MFPwidth) as a nonlinear feature to quantify themultifractal nature of heart sound signals.

2.8. Feature selection
The LASSOwas applied to feature selection (Yamada et al 2014). This operator applies L1 regularization process
and shrinks some irrelevant feature coefficients to zero tomake it possible to perform variable selection from the
global features. Therefore, it helps increase the interpretability of the resultingmachine learningmodel by
removing irrelevant feature variables that are not associatedwith the response variables; in this way, overfitting is
reduced. In this study, LASSO logistic regressionwas used for feature selection (Kang et al 2019), which imposes
afixed upper bound on the sumof the absolute values of themodel parameters by combining the advantages of
ridge regression and subset selection.

2.9.Machine learningmodel
The selected features were fed into amachine learningmodel forHF stage classification. This study compared
the performance of three typicalmachine learning approaches and chose the first-rank approach for
classificationmodel construction.

Table 3.The detail ofmulti-scale frequency-domain features of heart sounds

Feature sign Definition

LF_EF The ratio of signal energy of heart sound below 200Hz to that of the total signal

IMF1_EF The ratio of signal energy of heart sound sub-sequence constructed by IMF1 to that of the total signal

IMF2_EF The ratio of signal energy of heart sound sub-sequence constructed by IMF2 to that of the total signal

IMF3_EF The ratio of signal energy of heart sound sub-sequence constructed by IMF3 to that of the total signal

IMF4_EF The ratio of signal energy of heart sound sub-sequence constructed by IMF4 to that of the total signal

Sub1_EF The ratio of signal energy of heart sound sub-band signal constructed by sub-band1 to that of the total signal

Sub2_EF The ratio of signal energy of heart sound sub-band signal constructed by sub-band2 to that of the total signal

Sub3_EF The ratio of signal energy of heart sound sub-band signal constructed by sub-band3 to that of the total signal

Sub4_EF The ratio of signal energy of heart sound sub-band signal constructed by sub-band4 to that of the total signal

Table 4.The detail ofmulti-scale nonlinear features of heart sounds.

Feature sign Definition

SampEn Sample entropy of heart sound signal

IMF1_SampEn Sample entropy of heart sound sub-sequence constructed by IMF1 after CEEMD

IMF2_SampEn Sample entropy of heart sound sub-sequence constructed by IMF2 after CEEMD

IMF3_SampEn Sample entropy of heart sound sub-sequence constructed by IMF3 after CEEMD

IMF4_SampEn Sample entropy of heart sound sub-sequence constructed by IMF4 after CEEMD

Sub1_SampEn Sample entropy of heart sound sub-band signal constructed by sub-band1 after TQWT

Sub2_SampEn Sample entropy of heart sound sub-band signal constructed by sub-band2 after TQWT

Sub3_SampEn Sample entropy of heart sound sub-band signal constructed by sub-band3 after TQWT

Sub4_SampEn Sample entropy of heart sound sub-band signal constructed by sub-band4 after TQWT

MFPwidth Width ofmultifractal spectrumof heart sound signal

IMF1_MFPwidth Width ofmultifractal spectrumof heart sound sub-sequence constructed by IMF1 after CEEMD

IMF2_MFPwidth Width ofmultifractal spectrumof heart sound sub-sequence constructed by IMF2 after CEEMD

IMF3_MFPwidth Width ofmultifractal spectrumof heart sound sub-sequence constructed by IMF3 after CEEMD

IMF4_MFPwidth Width ofmultifractal spectrumof heart sound sub-sequence constructed by IMF4 after CEEMD

Sub1_MFPwidth Width ofmultifractal spectrumof heart sound sub-band signal constructed by sub-band1 after TQWT

Sub2_MFPwidth Width ofmultifractal spectrumof heart sound sub-band signal constructed by sub-band2 after TQWT

Sub3_MFPwidth Width ofmultifractal spectrumof heart sound sub-band signal constructed by sub-band3 after TQWT

Sub4_MFPwidth Width ofmultifractal spectrumof heart sound sub-band signal constructed by sub-band4 after TQWT
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2.9.1. LS-SVM
The LS-SVM,which avoids solving a quadratic programming problemwith high computational complexity by
solving a group of linear equations, has emerged as a benchmark for solving small-sample classification
problems in the biomedicalfield (VanGestel et al 2004). In this study, theGaussian radial basis functionwas
employed as kernel function. During the calculation process, the values of kernel, penalty and tolerance
parameters were chosen empirically to achieve the optimal systemperformance, as shown in table 5. Since the
LS-SVM is a binary classifier, it solvesmulti-class classification problems by adopting one-against-all (OAA) and
one-against-one strategies. In this study, theOAA strategy was utilized to classify five classes of heart sound
signals.

2.9.2. Deep belief networks
ADBN, a probability generationmodel consisting ofmultiple hidden-layer neural networks, is constructed
usingmultiple restricted Boltzmannmachines (RBMs) (Mohamed et al 2011), In thismodel, each hidden layer
of the subnetwork serves as the visible layer for the next layer. TheDBN training process includes two stages:
pretraining andfine-tuning. First, the RBMperforms the layer-by-layer greedy learning algorithm to adjust the
connectionweight of the deep neural networks using contrastive divergence; in this process,maximum
likelihood estimation is applied for updating of weights (Hinton 2012). Fine-tuning is then performed using a
backpropagation (BP) algorithm to optimize the connectionweights. Theweight decay and sparsity penalty are
used to overcome the problemof overfitting during the training phase. In this study, cross entropywas used as
the cost function, and the softmax functionwas adopted at the top of theDBNmodel.

2.9.3. Random forest
Random forests are ensemble learningmethods that operate by constructing amultitude of decision trees
(Pal 2005). They use feature randomness and are usually trainedwith the baggingmethodwhen building several
decision trees to try to create an uncorrelated forest of trees; the obtained results are then averaged. Each
individual tree relies on a random sample of appropriate values and is a separate classifier.When training the
nodes of each tree, the feature that is used is randomly selected from all features without replacement. Each tree
in the RF algorithm yields its own classification selection and thus votes for that class; the overall output of the
forest is the classification optionwith themost votes.

2.10. Performance evaluation
The overall dataset was categorized into different datasets via stratification and shuffling to ensure a similar
original distribution across the datasets. The heart sound samples fromone patient were not included in the
different datasets. Overall, 30%of the data were selected randomly as an independent testing set, and the
remaining data were used as the training set formodel construction via 5-fold cross validation. Stratification into
the training dataset was automatically performedwithout artificial intervention to avoid selection bias. A grid
search approachwas used to identify the optimal parameters for each classifier. Tominimize the perturbation

Figure 3.The illustration ofmultifractal spectrums for the heart sound signals from ahealthy subject and frompatients at differentHF
stages.
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problems encountered during feature selection and to examine the reproducibility of the experimental results,
we randomly assigned the data to a training or testing cohort 10 times. Subsequently, themodel was
reconstructed and verified repeatedly. The classification performance of themodels was evaluated using the area
under the curve (AUC). Confusionmatrix-relatedmetrics such as sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV) and accuracywere also calculated. The detailed parameter settings
for the usedmachine learning classifiers are listed in table 5.

2.11. Statistical analysis
The normality of all the continuous variables was assessed by the Shapiro–Wilk test to determinewhether a
parametric or a nonparametric test for comparison of variables should be performed. For the analysis of each
heart sound feature, the Kruskal–Wallis test or one-way analysis of variancewas performed, as appropriate, to
compare the differences among different CHF stages and the control group, and post hoc analysis with
Bonferroni correctionwas performed for both groups in the five-group case. The receiver operating
characteristic curvewas obtained for eachmodel by varying the classification probability threshold. The
differences among the AUC values yielded by the threemodels were assessed using theDelong test. All statistical
analyses were conductedwith R 3.6.0 (http://www.R-project.org). The level of statistical significancewas set at a
two-sided p value below 0.05.

3. Results

In our experiment, the preprocessing, feature extraction, andmachine learning stepswere implemented in
MATLAB 2015b (MathWorks, Natick,MA,USA). The proposed procedures were performed on a computer
workstationwith a 3.70GHz Intel Core i7-8700KCPU, aGeForceGTX1080Ti (8G)GPU, 32GBof RAMand a
64-bitWindows 10 operating system.

3.1.Multi-domain heart sound features among differentHF stages
The time-domain features of heart sounds are presented infigures 4(A)–(F). Compared to those of healthy
subjects, depressedD/S, S1/S2, IntS1/S, and IntS2/Swere observed in the patients withCHF, and the values of
these parameters decreased gradually with the progression ofHF from stage A to stageD. IntS1/Dand IntS2/D
were found to be elevated in the patients withCHF, and they increased asHF gets worse. The variation trend of
the low-frequency energy fraction (LF_EF) of heart sounds from individuals with the healthy cardiac condition
to advancedHF is shown infigure 4(G). The LF_EF of heart sounds decreased asHFworsened. The nonlinear
analysis showed that the SE andmultifractal spectrumwidth ( aD ) of heart soundswere significantly higher in
the healthy group than in theCHF group (P=0.015 and 0.023, respectively, figures 4(H)–(I)). The SE and aD
of heart sound signals have similar decreasing tendencywith the progression of CHF, and theymanifest the
greater values in stage Awhile show the smaller values in stageD. In the early stage of CHF (stages A or B), D/S,
S1/S2, IntS1/S, IntS2/S, LF_EF, SE and aD were found to be significantly higher than those in the advanced
stage of CHF (stageC orD) (all adjusted P< 0.05). Therewere no significant differences between stages A andB
in any of these parameters except for LF_EF and aD ( adjusted P=0.029 and 0.008, respectively).

3.2.Multi-scale heart sound features amongdifferentHF stages
Themulti-scale frequency, complexity and self-similarity characteristics of the heart sound signals decomposed
fromCEEMDandTQWTwere explored. The energy fractions of IMF1 and IMF2 decreased, while those of
IMF3 and IMF4 increased fromHF stages A toD, and the similar trendwas found for the sub-band signals
(table 6). This indicated that the energy fraction of the heart sound signals in the early stage of CHFwasmainly
concentrated in the low-frequency range (70–140Hz), and the high-frequency components of the heart sound
signals tended to increase whenCHFprogressed to the end stage. Themulti-scale SE and aD in each heart
sound sub-sequence and sub-band signal tended to decrease as theHFworsened from stages A toD, as shown in
figures 5 and 6. The SE and aD of sub-sequences and sub-band signals display smaller values in the advanced
stage of CHF than those in the early stage.

Table 5.Hyperparameter optimization.

Classifier Parameters

LS-SVM Kernel function=RBF, Kernel parameter=2, Penalty parameter= 80, Tolerance parameter=0.001
DBN Number of depth neural network layer=3,Number of units per layer=100, Learning rate=0.01, Epochs= 40.

RF Number of trees=80,Max depth=20, Seed=1
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3.3. Comparison of the classification performance of differentmachine learning-basedHF stage classifiers
Todetermine themost appropriatemodel for the classification ofHF stages, three representativemachine
learning classifiers such as LS-SVM,RF andDBNwere used to automatically classifyHF into four stages. The
optimized hyperparameters of the threemachine learning classifiers are listed in table 5; theywere obtained via a
grid search approach performed during the training process. The classification results of these threemodels on
the training, validation, and testing sets are illustrated by the confusionmatrices shown infigure 7. Table 7
presents the performance of the LS-SVMmodel in terms of automatedHF stage classification, where each
metric was calculated by averaging the results obtained in the 10 different runs completed for the 10 random
splits of the heart sound data. The LS-SVMachieved an accuracy of 0.820 (95%CI: 0.734–0.925) and
outperformed both the RFwith an accuracy of 0.795 (95%CI: 0.687–0.902) and theDBNwith an accuracy of
0.743 (95%CI: 0.625–0.871) on theHF stage classification task, which had sensitivity values ranging from0.806
to 0.841 and specificity values ranging from0.939 to 0.975 for the five classes of heart sounds.

Figure 4.Multi-domain features of heart sound signals. (A)D/S, (B) IntS1/D, (C) IntS1/S, (D)S1/S2, (E) IntS2/D, (F) IntS2/S, (G)
LF_EF, (H)MFPwidth, and (I) SampEn.

Table 6.The signal energy fractions of heart sound sub-sequences and sub-band signals.

Control

(N=255)
Stage

A (N=210)
Stage

B (N=280)
Stage

C (N=375)
Stage

D (N=255)

Sub-sequences IMF1_EF(%) 6.42±0.53 3.47±0.15 3.82±0.49 3.14±0.58 2.25±0.54
IMF2_EF(%) 41.52±6.151 37.19±3.78 35.75±4.81 31.17±4.78 28.92±5.69
IMF3_EF(%) 23.62±4.98 24.82±3.49 25.39±4.68 26.50±3.98 25.54±7.43
IMF4_EF(%) 10.12±2.11 14.13±2.86 16.34±3.14 17.55±3.62 19.96±3.79

Sub-band signals Sub1_EF(%) 5.87±0.59 3.74±0.36 3.45±0.42 2.92±0.51 2.47±0.65
Sub2_EF(%) 37.82±5.47 35.59±4.18 33.58±5.31 31.61±4.68 29.12±6.59
Sub3_EF(%) 23.67±5.18 24.72±4.69 26.31±7.68 28.50±5.98 29.56±7.49
Sub4_EF(%) 10.51±24.12 12.12±3.69 15.91±4.14 17.50±4.59 18.56±4.08
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3.4. Use of a combination ofmulti-scale andmulti-domain heart sound features
Themulti-domain features extracted from the original PCG signals, themulti-scale features extracted from the
heart sound sub-sequences and sub-band signals decomposed from the PCG signals, and a combination of both
were fed into the LS-SVMmodel to obtain the corresponding classification results. As shown infigure 8, when
themulti-scale features were used, the classification performance of themodel was better than that achieved
using themulti-domain features alone. The best result was obtained by using the combined features, and the
accuracy increased from0.741 to 0.820.

4.Discussion

In this study, we explored the changes in the time-domain, frequency-domain and nonlinear features of PCG
signals alongwith the progression ofHF and constructed an LS-SVMbasedmachine learningmodel for the
classification ofHF stages usingmulti-scale andmulti-domain heart sound features. Favourable classification
performancewas achieved in that the accuracy reached 0.871 (95%CI: 0.814–0.968) on the training set, 0.836
(95%CI: 0.768–0.914) on the validation set and 0.820 (95%CI: 0.734–0.925) on the testing set.Machine
learningmodels that routinely combine clinical variables (Su et al 2014) or ECG features (Li et al 2019) have the
potential to classifyHF stages when varying degrees of cardiacmechanical dysfunctionwere detected. Since
heart sounds are the acoustic vibrations that are produced during themechanical processes of the cardiac cycle,
they can be used for heart abnormalitymonitoring. Furthermore, PCG is noninvasive, resulting in convenience
and time savings.When combinedwithmachine learning, this technique has the potential to serve as a cost-
effective auxiliary screening tool forHF stage classification andmay offer a novel screening strategy for the
patients who are at high risk of CHFor in its early stage.

Figure 5.Multi-scale features of heart sound sub-sequences, (A)multi-scalemultifractal spectrumwidth and (B) sample entropy.
From left to right: healthy, stages A, B, C andD.

Figure 6.Multi-scale features of heart sound sub-band signals, (A)multi-scalemultifractal spectrumwidth and (B) sample entropy.
From left to right: healthy, stages A, B, C andD.
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Studies of the relationship between heart sounds and cardiac contractility have inspired a newfield of
research inwhich cardiac inotropic analysis is used as an approach to detect andmeasure CHF (Xiao et al 2000,
Shah andMichaels 2006, Tang et al 2017, Thakur et al 2017).We have previously proven the effectiveness of a
heart sound-basedmachine learningmodel for differentiating betweenCHF and healthy people (Zheng et al
2015), and for the identification ofHF subtypes such asHFwith reduced ejection fraction (HFrEF) andHFwith
preserved ejection fraction (HFpEF) (Gao et al 2020). However, to our knowledge, no previous study has sought
to quantitatively classify the ACC/AHAHF stages using heart sounds, specifically in terms of utilizingmulti-
scale andmulti-domain heart sound features. In the present work, wemoved forward tofirst investigate the
variation in heart sound features alongwith the progression ofHF from stage A to stageD and then constructed a
multi-scale andmulti-domain heart sound feature-based computer-aided diagnosismodel forHF stage
classification usingmachine learning.

Previous studies have shown thatD/S can be used to noninvasively assess cardiac reserve (Cheng et al 2021).
DepressedD/Swas observed asCHFprogressed through the four stages, which are termed stages A toD. This is
because of the abnormal prolongation of the systolic duration or the shortening of the diastolic duration caused
by compromised cardiac filling and function abnormality whenCHFoccurs (Xu et al 2018). This finding is also
in accordancewith the evidence that themost important aspect of cardiac dysfunction inHF patients is not the
depressed cardiac performance observed in the basal resting state but rather the loss of cardiac reserve
(Tan 1986). HF represents an impairment and failure of cardiac contractility and states thatmay result in systolic
dysfunction as well as a low ejection fraction (Bloom et al 2017).Many studies have shown thatHF can cause
diminished cardiomyocyte contractility at the cellular level, which ismanifested as decreased cardiac
contractility in the patients withCHF (Norman et al 2011, Borlaug 2014). In addition, the strength of heart
sounds has been shown to be related to the rate of change of left ventricular pressure and cardiac contractility
(Hansen et al 1989, Tang et al 2013). This can explain the gradual decrease in S1/S2with the progression of CHF.

Figure 7.Confusionmatrix for the classification of ACC/AHAheart failure stages using LS-SVMon the (A) training, (B) validation
and (C) testing sets.

Table 7.The performance for ACC/AHAHF stage classification using LS-SVMon the training, validation and testing sets.

Sensitivity Specificity F1 PPV NPV Accuracy

Training set Control 0.910±0.035 0.983±0.034 0.916±0.044 0.924±0.064 0.980±0.069 0.871 (95%CI:

0.814–0.968)
A 0.876±0.023 0.965±0.028 0.847±0.062 0.820±0.071 0.977±0.057
B 0.850±0.041 0.957±0.053 0.842±0.028 0.834±0.059 0.962±0.052
C 0.845±0.052 0.965±0.047 0.871±0.036 0.900±0.073 0.943±0.069
D 0.891±0.043 0.969±0.062 0.880±0.041 0.869±0.069 0.975±0.061

Validation set Control 0.901±0.039 0.952±0.030 0.883±0.059 0.888±0.069 0.972±0.083 0.836 (95%CI:

0.768–0.914)
A 0.877±0.028 0.948±0.087 0.831±0.038 0.802±0.074 0.975±0.092
B 0.830±0.053 0.913±0.049 0.792±0.047 0.785±0.058 0.947±0.074
C 0.857±0.047 0.923±0.063 0.840±0.075 0.843±0.036 0.941±0.067
D 0.828±0.019 0.955±0.062 0.839±0.082 0.869±0.047 0.957±0.056

Testing set Control 0.841±0.035 0.975±0.048 0.861±0.046 0.885±0.019 0.962±0.074 0.820 (95%CI:

0.734–0.925)
A 0.826±0.028 0.958±0.065 0.802±0.074 0.779±0.028 0.967±0.068
B 0.826±0.057 0.939±0.069 0.800±0.071 0.776±0.093 0.953±0.065
C 0.806±0.062 0.946±0.074 0.828±0.066 0.852±0.074 0.928±0.059
D 0.807±0.049 0.955±0.057 0.805±0.057 0.803±0.038 0.956±0.083
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We found that the signal energy of the low-frequency components of heart sounds decreased asHF
worsened. Sincemost of the energy in normal heart sound signals is concentrated in the low-frequency spectrum
between 10 and 150Hz (Safara et al 2013), an increase in the high-frequency components of heart sound signals
indicates the occurrence of heartmurmurs (Bozkurt et al 2018) that result from the impairment of the cardiac
structure, such as aortic insufficiency andmitral regurgitation (Choi et al 2011), whenHFprogresses
significantly. The decreases in the entropy andMFPwidth indicate that the complexity and self-similarity of the
heart sound signals have decreased, respectively (Zheng andGuo 2017), and this suggests that decreased chaotic
characteristics in cardiacmechanical activity can be observed. This is consistent with the changes in cardiac
electrophysiological signals, such as electrocardiogram (ECG) signals (Turcott andTeich 1996, Jahmunah et al
2019).

In this study, a novel exploration of the changes that occur in themulti-scale information of heart sound
signals asHF progressed from stages A toDwas presented.We usedCEEMDandTQWT to generate heart
sound sub-sequences and sub-band signals with different frequency components and explored the changes in
frequency, entropy andmultifractal characteristics of those asHF progressed from stage A to stageD. The results
indicate that the changes inmulti-scale features obtained fromheart sound sub-sequences and sub-band signals
occur before those in conventional features whenHF are detectable. The classification ofmulti-scale andmulti-
domain heart sound features therefore has the potential to facilitate early detection of subclinical CHF (stages A
andB) and to provide information that can help physicians in their clinical decision-making regarding the
initiation of direct and indirect treatment interventions.

The use of heart sound classification in the noninvasive diagnosis of cardiac diseases such as coronary heart
disease (Liu et al 2021,Winther et al 2021) and congenital heart disease (Kui et al 2021, Lv et al 2021) has been
widely explored. Focusing on the application of heart sound analysis for CHFhas been shown to be efficient in
terms of distinguishing healthy individuals from the patients withCHF and differentiating betweenHFpEF and
HFrEF (Zheng et al 2015, Liu et al 2019). In contrast to those studies, we proposed to extractmulti-scale heart
sound features using CEEMDandTQWTand combining those features with othermulti-domain heart sound
features to construct an LS-SVMbasedmachine learningmodel for ACC/AHAHF stage classification.

This study also has several limitations. First, it was a prospective studywith a relatively small study cohort,
and future studies should collect external validation data fromdifferent centres to enhance the generalization of
the constructedmachine learningmodel. Second, the clinical application of the proposed approach should be
further validated using larger prospective studies withmulticentric data. Third, although the heart is an
electromechanical pump, heart sounds provide information on cardiacmechanical activity but not
electrophysiological information, and therefore, the use ofmulti-modal cardiac physiological signals such as a
combination of heart sound and ECG signals should be considered as away of obtainingmore comprehensive
information on the global heart system. Fourth, a subgroup analysis should be performed.

Figure 8.The average performance of LS-SVMmodel usingmulti-domain heart sound features,multi-scale heart sound features or a
combination of both on the testing set. The sensitivity, specificity, F1, PPV andNPV and accuracywere calculated by the average of
those values in different groups on the testing set where eachmetric was calculated by averaging the results obtained in the 10 different
runs.
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5. Conclusion

This study demonstrates that heart sound signals represent a valuable source of information regarding the
severity of CHF and the heart sound features change as CHFprogresses. The LS-SVMbasedmachine learning
model using a combination ofmulti-scale andmulti-domain heart sound features described in this work can be
used as a potentially noninvasivemethod for ACC/AHAHF stage classification andmay offer a promising and
feasible way to improve clinicalmanagement and therapeutic decisions on the patients withCHF.
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