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Purpose: To explore the application value of multiparametric computed tomography

(CT) radiomics in non-invasive differentiation between aldosterone-producing and

cortisol-producing functional adrenocortical adenomas.

Methods: This retrospective review analyzed 83 patients including 41 patients with

aldosterone-producing adenoma and 42 patients with cortisol-producing adenoma.

The quantitative radiomics features were extracted from the complete unenhanced,

arterial, and venous phase CT images. A comparative study of several frequently

used machine learning models (linear discriminant analysis, logistic regression, random

forest, and support vector machine) combined with different feature selection methods

was implemented in order to determine which was most advantageous for differential

diagnosis using radiomics features. Then, the integrated model using the combination

of radiomic signature and clinic–radiological features was built, and the associated

calibration curve was also presented. The diagnostic performance of these models was

estimated and compared using the area under the receiver operating characteristic (ROC)

curve (AUC).

Result: In the radiomics-based machine learning model, logistic regression model with

LASSO (least absolute shrinkage and selection operator) outperformed the other models,

which yielded a sensitivity of 0.935, a specificity of 0.823, and an accuracy of 0.887

[AUC = 0.882, 95% confidence interval (CI) = 0.819–0.945]. Moreover, the nomogram

representing the integrated model achieved good discrimination performances, which

yielded a sensitivity of 0.915, a specificity of 0.928, and an accuracy of 0.922 (AUC =

0.902, 95% CI= 0.822–0.982), and it was better than that of the radiomics model alone.

Conclusion: This study found that the combination of multiparametric radiomics

signature and clinic–radiological features can non-invasively differentiate the subtypes of

hormone-secreting functional adrenocortical adenomas, which may have good potential

for facilitating the diagnosis and treatment in clinical practice.

Keywords: radiomics, machine learning, multidetector computed tomography, computer-assisted diagnosis,

adrenocortical adenoma
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INTRODUCTION

Adrenocortical adenomas (ACAs) are the most common benign
adrenal cortical tumors representing 50–80% of all adrenal
tumors (1) that may be functional (hormone-secreting) or non-
functional depend on whether producing hormones. Among
functioning adenomas, two major subtypes are aldosterone-
producing adenoma (APA) and cortisol-producing adenoma
(CPA), leading to respective complications including primary
aldosteronism (Conn syndrome) and hypercortisolism (Cushing
syndrome), and each requires different treatment strategies
including surgery or medications. The diagnosis of the functional
ACAs is dependent on the clinical manifestations, laboratory
tests, imaging, and pathologic examinations forming the basis
to conclude. However, the differential diagnosis between APA
and CPA still remains challenging because many patients are
asymptomatic or there were only non-specific symptoms with
no clinical evidence of steroid overproduction (2, 3). The gold
standard for the diagnosis of APA is through a technically
difficult and invasive procedure that samples from a vein located
near the adrenal glands, called adrenal vein sampling (AVS),
to determine aldosterone and cortisol levels (4, 5) The success
rate of right AVS is as low as 10% because of the particular
and complex anatomical structure (6). Moreover, about 10–20%
of ACAs are bilateral or multiple (7, 8). In such condition, it
is very important, but also quite difficult, to distinguish the
responsible foci to avoid unnecessary excision or overresection
for performing precision treatment.

In general, current conventional imaging methods are
insufficient to distinguish between functioning and non-
functioning adenomas or subtypes of functioning ACAs. As
an emerging medical image processing technology, radiomics
provides the potential for more refined representation of tumor
characteristics with isotropic homogeneity and leads to the
advantage over human observers, which have demonstrated
promising performance in terms of differential diagnosis. It
has been proven that radiomics procedure can process a large
number of image characteristics and implement automatic
diagnostic process (9, 10), combining with machine learning
algorithms and nomogram method (11). To our knowledge,
little work has been done on such a computed tomography
(CT)–based radiomics to distinguish CPA from APA, and
whether radiomics features of CT images can serve as the
informative biomarkers for the differential diagnosis between
those is unknown.

With this in mind, we conducted two hypotheses. One
was that the radiomics-based machine learning model could
provide a computer-aided differential diagnosis for hormone-
secreting subtypes of functional ACAs; the other was that
the nomogram that integrated radiomics signature and clinic–
radiological indicators would improve the differential diagnostic

Abbreviations: ACA, Adrenocortical adenomas; APA, Aldosterone-producing

adenoma; CPA, Cortisol-producing adenoma; PA, Primary hyperaldosteronism;

ROI, Region of interest; VOI, Volume of interest; ROC, Receiver operating

characteristic; AUC, The area under the ROC curve; LR, Logistic regression;

SVM, Support vector machine; PCA, Principal component analysis; LASSO, Least

absolute shrinkage and selection operator; ICC, Intraclass correlation coefficient.

performance. Therefore, the primary purpose of our study was
to determine whether multiparametric CT radiomics by using
machine learning algorithms and visual nomogram effectively
perform differential diagnosis between CPA and APA.

MATERIALS AND METHODS

The research sequence of this study was presented in Figure 1.
The details could be checked in the following sections.

Profile of Subjects
This retrospective study was approved by the institutional
review board of our institution, and the written informed
consent was waived. The enrolment process of patients for
this study is shown in Figure 2. In total, 106 patients who
underwent contrast-enhanced CT scannings for clinically and
pathologically diagnosed CPA (n = 50) or APA (n = 56)
from January 2014 to November 2018 were retrospectively
reviewed. The diagnosis of APA and CPA was established by
these criteria: (i) common clinical characteristics and laboratory
findings including an elevated aldosterone/renin ratio together
with positive confirmatory tests in APA and an elevated serum
cortisol, failure to suppress cortisol with dexamethasone, and
normal aldosterone levels in CPA, respectively; (ii) presence
of an adrenal mass confirmed via CT before surgery; (iii) a
confirmed pathological diagnosis of the adrenal mass as an
adrenal adenoma after surgery; and (iv) a postoperative cure
or considerable improvement. The exclusion criteria were as
follows: (i) insufficient clinical data; (ii) receiving treatment
before surgery; (iii) calcified lesions in tumors; and (iv) motion
artifacts disturbed the lesion characterization severely. Finally,
9 patients with CPA and 14 patients with APA were excluded.
The dataset was divided into two portions called training set
and testing set, 70% of which were used as training set, and the
remaining 30% were used as test set.

Imaging Protocol
All CT imaging was acquired using the same multidetector CT
system (Somatom Sensation 64; Siemens Healthcare, Erlangen,
Germany) following a standardized protocol. A three-phase
scanning was performed on each patient (plain scan, arterial
phase, and venous phase). The CT scanning parameters were as
follows: tube voltage of 100 kV; tube current of 75 mAs, and slice
thickness of 5mm. Images were reconstructed using a B60f filter
with a slice thickness of 1mm and a slice increment of 1mm as
axial images. Contrast-enhanced CT images were obtained after
intravenous administration of iohexol (300mg/mL at a rate of 3.0
mL/s, followed by a 30-mL saline flush). Arterial phase imaging
and portal phase imaging were initiated at 30 and 70 s after the
injection of iohexol. The total contrast volume was 1.5 mL/kg.

Imaging Segmentation and Volume of
Interest Labeling
All CT images (DICOM format) were loaded into a computer
workstation for region of interest (ROI) segmentation, which
were displayed with the appropriate window level and window
width. Two radiologists with 5-year experience in interpreting
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FIGURE 1 | Workflow of multiparametric CT radiomics-based machine learning model and nomogram.

FIGURE 2 | The illustration of inclusion and exclusion criteria.

CT imaging (Dr. Liu and Zhong) were recruited to manually
delineate the two-dimensional (2D) ROI around the tumor
outline slice by slice to form 3D volume of interest (VOI) on
the CT plain scan, arterial phase, and venous phase images
using an open-source image processing platform ITK-SNAP
(version 3.7) (12), where horizontal, coronal, and sagittal
views were represented simultaneously for visualization. Image

magnification and 3D view techniques have been used to facilitate
precise segmentation (Figure 3).

Imaging Analysis
Conventional imaging analysis was included the following
information: (a) tumor size; (b) mean CT attenuation of tumor
in precontrast, arterial, and portal venous phase; and (c) the
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FIGURE 3 | The illustration of ROI selection. (a) The Unenhanced and contrast-enhanced CT images at (b) the arterial phase and (c) portal phase of CT imaging

findings in a 46-year-old woman with aldosterone-producing adenoma (APA, black arrow); (d) the unenhanced and contrast-enhanced CT images at (e) the arterial

phase and (f) portal phase of CT imaging findings in a 39-year-old man with cortisol-producing adenoma (CPA, white arrow).

presence of ipsilateral or contralateral adrenocortical atrophy.
The mean CT attenuation was used to describe average value
of tumor density over the CT pixels and automatically obtained
by drawing ROI around tumor contour on workstation. The
presence of adrenocortical atrophy was defined as the maximum
thickness of a unilateral adrenal glandmore than a 50% reduction
compared to the other side.

Radiomics Feature Extraction
The radiomics features were extracted from each VOI
segmentation derived from multiparameter CT images,
which are divided into four feature groups: (I) intensity,
(II) shape, (III) texture, and (IV) wavelet features (11, 13).
Supplementary Tables 1–3 summarize these features in this
study. Mathematical definitions of all radiomics features, as
well as the extraction methods, have been described (14). The
texture features were computed by averaging their values over
all 13 directions. Wavelet features are the transformed domain
representations of the intensity and textural features, which were
computed on different wavelet decompositions of the original
image using a Daubechies wavelet transformation. Finally,
the combination of four categories of features derived from
multiphase CT images was incorporated into the radiomics
feature set.

Reproducibility Evaluation and Feature
Selection
Radiomics feature reproducibility was evaluated prior to feature
selection by computing the intraclass correlation coefficient
(ICC). Each radiomics feature with ICC more than 0.8 was
set to consider robust to acquisition variation (15) (see
Supplementary), which were retained based on the hypothesis

that non-robust features would be too sensitive to noise to be
predictive of clinical outcomes. Feature selection as an important
problem for pattern classification has become an apparent need
in the radiomics application. To find optimal characterization
condition and achieve minimal classification error in machine
learning, feature relevancy needs to be eliminated. The extracted
radiomics features were selected using principal component
analysis (PCA), ReliefF algorithm, least absolute shrinkage and
selection operator (LASSO), recursive feature elimination, and
mutual information. We chose these methods mainly because
of their popularity, simplicity, and computational efficiency. All
features have been normalized to zero mean and unit variance
so as to avoid being affected by the differences in respective
feature scales for classification model building. Furthermore,
publicly available implementations were readily available for
these methods, which increases their reusability.

Construction of the Radiomics-Based
Machine Learning Model
For the model development, four different algorithms such as
linear discriminant analysis, logistic regression (LR), random
forest, and support vector machine (SVM) have been adopted.
Each classifier has been tested and verified using the feature sets
obtained by the different feature selection methods to construct
the stable and optimal machine learning model. In the training
set, efficient data partitioning such as 5-fold cross-validation
was employed to tune and optimize the model parameter to
achieve good assessment of the model performance (16). The
area under the receiver operating characteristic (ROC) curve
(AUC), sensitivity, specificity, and accuracy were used as metrics
to assess the performance of the machine learning models. All
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classifier algorithms were implemented by our in-house scripts
in MATLAB (version 2017b, MathWorks, Natick, MA, USA).

Establishment and Validation of the
Nomogram
The nomogram was used to represent the integrated model for
distinguishing APA from CPA. The radiomics signature was
constructed by the selected features sorted by their coefficient
values in LASSO. Then, the nomogram based on the multivariate
logistic analysis was developed by using the combination
of radiomics signature and clinic–radiological features as a
quantitative diagnostic tool to provide physicians with an
individual prediction probability of APA. Calibration curves
accompanied by the Hosmer–Lemeshow test were used to assess
the model performance. AUC, accuracy, PPV, and NPV were
calculated to quantify the diagnostic performance of nomogram.
The 1,000-bootstrap repetitions were carried out for internal
validation to achieve a relatively corrected performance where
the training cohort was randomly chosen with a replacement
from the original dataset.

Statistics
Continuous variables, expressed as mean value ± standard
deviation or median with interquartile range as appropriate,
were analyzed using Student t-test or Mann-Whitney U-test,
respectively. Categorical/dichotomous variables, expressed as
counts (percentage), were analyzed using a χ

2-test or Fisher
exact test as appropriate. Multiple and pairwise comparisons
of AUCs were accomplished using the DeLong non-parametric
approach. Univariate and multivariate logistic regression models
were employed to select the independent clinical features
and construct clinic–radiological model. Statistical analysis
was performed with R version 3.6.1 (http://www.r-project.
org). A two-sided p < 0.05 was considered to represent
statistically significant.

RESULTS

CT Findings and Clinic–Radiological Model
The demographic data and radiological characteristics between
APA and CPA are presented in Table 1. Sex ratio and age
distribution did not differ significantly between these two groups
(p > 0.05). In conventional CT findings analysis, there were
significant differences between CPA and APA groups in tumor
size, mean CT attenuation value of precontrast phase and portal
venous phase, and the presence of adrenocortical atrophy (p <

0.05). In the APA group, the tumor showed smaller size and
lower mean CT attenuation compared to CPA group, while
the ipsilateral or contralateral adrenocortical atrophy was more
commonly seen in CPA group (Table 2).

In total, 58 patients including 29 patients with CPA and
29 patients with APA comprised the training cohort, and 25
patients including 12 patients with CPA and 13 patients with APA
comprised the test cohort. The proportions of training cohort and
the test cohort were 70 and 30%, respectively, and no significant
differences of clinical characteristics or CT findings were found
between the training and test cohorts (p > 0.05). Table 2 showed

TABLE 1 | Demographic data of this study.

Type APA CPA P

Number of patients 41 42

Age (years) 46.8 ± 7.95 47.9 ± 8.17 0.469

Sex Female (24) Female (30) 0.316

Male (17) Male (12)

the significant differences between CAP and APA in the training
and test cohorts.

Radiomics Features Calculation and
Robustness Assessment
The longest diameters and the ratio of longest diameter to
shortest diameter of raw ROIs between two groups were
distributed without statistical significance (p > 0.05), each of
which was selected from the slice demonstrating the largest
cross-sectional area on CT images. ICCs on the basis of
radiologist I’s first-extracted features and those of radiologist
II were employed to evaluate the consistency between different
physicians. The ICCs on the basis of radiologist I’s first and
second feature extraction were calculated to evaluate the stability
and reproducibility of each feature. According to the criterion
of excluding the radiomics features with ICC below 0.8, a total
of 39 radiomics features were considered as robust shown in
Supplementary Table 4.

Radiomics Feature Selection and Machine
Learning Model Performance Comparison
Feature selection determines the minimum set of relevant
indicators needed by a machine learning model. The above
robust radiomics features are further screened by retaining
those that differed significantly between the two groups. Twenty
classification strategies using combinations of four machine
learning and five feature selection methods, respectively, have
been tested, and the AUCs for differential diagnosis between
CPA and APA in the test dataset are shown in Figure 4. For
the combination of multiple sequences, it is shown that the LR
combined with LASSO performs better and more stable than the
other models, which yielded a sensitivity of 0.935, a specificity of
0.823, and an accuracy of 0.887 [AUC = 0.882, 95% confidence
interval (CI) = 0.819, 0.945], followed by SVM classifier with
ReliefF, yielding an accuracy of 0.842 (AUC = 0.854, 95% CI =
0.811–0.897) in the test cohort.

Performance of Sequences
The discriminative performance of the LR-LASSO models using
the radiomics features from multiple sequences and single
sequence was investigated. The ROC curves for all single
sequences such as CT plain, arterial phase, and venous phase
scanning are shown in Figure 5A, and the ROC curves for the
combination of multiple sequences are shown in Figure 5B. For
single sequence, the performance of plain and venous phase
scanning is similar, and the highest AUC was 0.834 (95% CI
= 0.779–0.889). For two sequences, the performance of the
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TABLE 2 | Clinical characteristics and CT findings of patients with CPA and APA.

Characteristics Training cohort (n = 58) p Test cohort (n = 25) p

APA (n = 29) CPA (n = 29) APA (n = 12) CPA (n = 13)

Age (years)# 45.9 (8.9) 51 (11.6) 0.008 49.0 (9.3) 41.1 (10.9) 0.018

Sex*

Female 17 (58.6) 21 (72.4) 0.407 7 (58.3) 9 (69.2) 0.057

Male 12 (41.4) 8 (27.6) 5 (41.7) 4 (30.8)

Size# 1.6 (0.54) 2.64 (1.57) 0.001 1.5 (0.61) 2.62 (0.40) 0.025

Unenhanced# 5.9 (10.3) 9.31 (16.3) <0.01 6.3 (9.2) 13.9 (16.4) <0.001

Art# 47.4 (17.6) 50.6 (24.9) 0.002 48.9 (19.7) 45.8 (24.9) 0.061

Ven# 56.7 (17.8) 64.5 (23.5) <0.01 57.5 (17.2) 79.5 (35.9) <0.001

Atrophy*

Yes 4 (13.8) 11 (37.9) 0.071 1 (8.3) 7 (53.8) <0.001

No 25 (86.2) 18 (62.1) 11 (91.7) 6 (46.2)

#Data are mean (standard deviation) or median (quartile). p-value was calculated with Student t-test or non-parametric test.

*Data are number of patients, with the percentage in parentheses. p-value was calculated with the χ
2 or Fisher exact test.

FIGURE 4 | The performance comparison of machine learning models with

different feature selection methods.

combination of plain and venous phase scanning was highest
with an AUC of 0.876 (95% CI = 0.808–0.944). For three
sequences, the model performed best and yielded the highest
AUC of 0.882 (95% CI = 0.819–0.945). The AUCs among the
three single sequences were not statistically significant, while the
DeLong test showed that the AUCs for the different combinations
of the multiple sequences were significantly better than those of
single sequences, and the AUC for the combinations of the three
sequences was the highest.

The Combined Model Incorporating
Radiomics Signature and
Clinic–Radiological Characteristics
The above results revealed that the multiparametric CT
radiomics-based LR-LASSO model would be most suitable to
effectively differentiate CPA from APA. The clinic–radiological
characteristics such as age, gender, tumor size, and CT
value were determined to establish the clinical model. The
combined model that incorporated radiomics signature and
clinic–radiological characteristics was developed and presented

as a radiomics nomogram (Figure 6A). The clinical model
yielded an AUC of 0.829 (95% CI, 0.796–0.863) in the training
cohort and 0.732 (95% CI, 0.671–0.793) in the test cohort. When
clinic–radiological characteristics were combined, the radiomics
nomogram yielded an AUC of 0.931 (95% CI = 0.869–0.993) in
the training cohort and 0.902 (95% CI, 0.822–0.982) in the test
cohort. Table 3, Figure 7 presented the detailed discrimination
indicators of the three models. The calibration curves of the
radiomics nomogram for differential diagnosis between CPA
and APA showed good agreement between the model outcome
and gold standard test in the training (Figure 6B) and test
(Figure 6C) cohorts (p = 0.849 and 0.814, respectively; Hosmer-
Lemeshow test). The net reclassification improvement (NRI)
test showed the integrated model achieved considerably better
discrimination ability than the clinic–radiological model (p =

0.012) and radiomics model (p = 0.012) in the training cohort.
The performance of the integrated model was comparable to that
of the radiomics model (p = 0.989; NRI test), but was superior
to that of clinic–radiological model (p = 0.001; NRI test). The
illustration in the supplementary material presented two cases
pathologically diagnosed as CPA and APA, respectively, and the
probability values predicted by the nomogram.

DISCUSSION

The prevalence of adrenal adenoma is reported to be related
to age, and the frequency of unsuspected adenoma is 0.14%
in patients aged 20–29 years and 7% in those older than
70 years (17). Most previous studies were concentrated
on the imaging features of adenoma differentiated from
other non-adenomas in patients such as hyperplasia, cyst,
myelolipoma, pheochromocytoma, cortical carcinoma, and
metastases (18). Recent investigations have revealed that multiple
imaging modalities such as dual-energy CT, magnetic resonance
(MR) chemical-shift imaging, diffusion-weighted imaging, MR
spectroscopy, and dynamic contrast-enhanced imaging showed
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FIGURE 5 | Performance of LR-LASSO model based on different sequences with 5-fold cross-validation. (A) Based on single sequence. (B) Based on

multiparametric CT.

various sensitivity and specificity for differential diagnosis of
adenoma (19–21). However, few articles focused on the subtypes
identification of functional ACAs using imaging modalities. The
routine CT images are not only similar in different types of
functional ACAs but also do not allow functioning adenomas
to be differentiated from non-functioning adenomas, therefore
providing merely limited diagnostic value (22).

Obviously, it is of great significance for non-invasive
differential diagnosis of ACAs, while discriminating between
CPA andAPA is still a clinical challenge. In this study, we adopted
advanced radiomics to multiphase adrenal CT and constructed
machine learning model for classification diagnosis of adrenal
adenoma, aiming to investigate whether certain multiparametric
CT radiomics can facilitate distinguishing CPA from APA. We
also investigated and compared the discrimination performance
of different combinations of feature selection and machine
learning algorithms in this task.

The differences of functional adrenal adenomas between CPA
and APA on conventional CT images were compared. First,
there was a certain difference in tumor size between the two
groups, and in general, CPA was larger than APA. This may
be related to the origination of the tumor tissue. The cells of
the zona fasciculata and the zona glomerulosa of the adrenal
cortex are responsible for producing cortisol and aldosterone,
respectively. Histology shows that the zona fasciculata in the
adrenal cortex occupies a larger area than zona glomerulosa;
the former is the thickest zonas making up 50% of the cortex,
and the latter accounts for around 15% of the thickness of
the cortex (23). Next, the mean CT attenuation of CPA on
precontrast CT image is higher than that of APA. The adrenal
adenomas were composed of different proportions of clear
cells and compact cells. APA is mainly composed of a large
number of clear cells (lipid-rich) with increased mounts of
lipofuscin in the cytoplasm arranged in irregular patches or
strips, leading to CT attenuation similar to fat. While CPA
mainly presents with granule cell tumors, and the cells are
densely arranged in small mesh or fasciculate patterns, with cell
cords exhibiting sinus gap shapes and blood sinus, leading to
CT attenuation close to soft tissue (24). Lastly, CPA was more

likely to develop the ipsilateral or contralateral adrenocortical
atrophy than APA. This is associated with atrophy of the
non-tumorous cortex due to the negative feedback–suppression
effects of the hypothalamic–pituitary axis in CPA. In contrast,
the non-tumorous adrenal cortex is not atrophic in glands
harboring an APA (24). These findings were basically consistent
with previous radiological and pathological reports (7, 24, 25).
Although it is still insufficient to distinguish the two tumors on
conventional CT image, it may give radiomics the possibility
to extract more correlated quantitative features for improving
decision support.

CT-based radiomics providing a non-invasive and low-cost
analysis technique for tumor property evaluation based on image
data has been widely applied (26). The radiomics-based machine
learning model can analyze and process CT images in the gray
level as well as individual level (27). In the training stage, it
is capable of learning from experiential data and hence could
discover the general trend of those (priori knowledge). In the test
stage, based on the discovered priori knowledge, the model could
automate and improve prediction and classification of unknown
data effectively, as well as provide the diagnostic information
for the individual (28). Until now, the study on the application
of radiomics-based computer-aided framework to differential
diagnosis between CPA and APA has not been reported. To our
knowledge, this is the first study that provides a comprehensive
difference quantification of adenomas using radiomics features
and gives us new insights for differentiating CPA and APA using
machine learning.

In our study, the appropriate feature selection strategies such
as ICC analysis, LASSO, and PCA were addressed to enhance the
repeatability of radiomics features and improve the classification
process by reducing overfitting of models (29). This study
evaluated diagnostic capabilities of radiomics features and put
much emphasis on the comparison of different machine learning
models, because the computational models with high accuracy,
reliability, and efficiency of prediction and prognosis are vital
factors driving the success of radiomics (18). Radiomics features
as imaging biomarkers are emerging and need to be studied and
validated prospectively when served in the differential diagnosis

Frontiers in Oncology | www.frontiersin.org 7 September 2020 | Volume 10 | Article 570502

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zheng et al. Radiomics Diagnosis Cortisol-Producing Aldosterone-Producing Adenomas

FIGURE 6 | The visual presentation of nomogram combining the radiomics signature and clinic–radiological indicators (A) and its calibration curves in training cohort

(B) and test cohort (C).

TABLE 3 | Diagnosis performance of the three models.

Model Clinics Radiomics Nomogram

Training Test Training Test Training Test

AUC 0.829 (0.796, 0.863) 0.732 (0.671, 0.793) 0.897 (0.841, 0.953) 0.882 (0.819, 0.945) 0.931 (0.69, 0.993) 0.902 (0.822, 0.982)

Accuracy 0.745 0.714 0.881 0.887 0.933 0.922

Sensitivity 0.719 0.691 0.909 0.935 0.909 0.915

Specificity 0.798 0.735 0.876 0.823 0.968 0.928

PPV 0.801 0.746 0.869 0.836 0.951 0.931

NPV 0.723 0.687 0.914 0.933 0.914 0.907

Data are percentages with 95% CIs in square parentheses. Nomogram indicates the integrated model combining of clinics and radiomics features; PPV, positive predictive value; NPV,

negative predictive value.
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FIGURE 7 | The ROC curve analysis for differential diagnostic efficiency of three models in training cohort (A) and test cohort (B).

of various diseases (30). Our study proposed a radiomics-based
machine learning framework to characterize the differences of
CT images from the patients with CPA and APA, which could
achieve a satisfying clinical outcome. This contributes to simplify
the complex diagnostic procedures by voiding the multifarious
clinical examinations.

We studied a total of 627 radiomic features extracted from
plain scan, arterial phase, and venous phase CT images, including
4 geometric features, 9 first-order statistical features, 40 texture
features, and 156 wavelet features in each phase. The 24 radiomic
features that differed significantly between the two groups were
selected for a radiomics signature. A nomogram that combined
radiomic signature with the clinic–radiological features (age,
gender, and tumor size, mean CT attenuation, and adrenocortical
atrophy) improved the differentiation accuracy in the training
and test cohorts. The concept underlying the radiomics process
is that both morphological and functional clinical images contain
qualitative and quantitative information, which may reflect
the underlying tissue-level features, in line with pathological
findings (31). Previous studies have reported there were subtle
structural and pathological differences between APA and CPA,
which had different proportions composed of clear cells (lipid
rich), compact cells (lipid poor), cell arrangement, and blood
sinus, the same as previously discussed (23, 24). APA cells
contained mitochondria with lamellar-type or plate-like cristae,
whereas CPA cells contained mitochondria with tubulovesicular
cristae (24). Previous studies have indicated that texture analysis
and radiomics features were linked with microenvironment
heterogeneity within tumors. Quantitative histologic analysis
revealed that intratumoral immune cell infiltration was more
pronounced in CPAs than in APAs, and the vascular density was
also significantly higher in CPAs (32).

The limitation of our work also exists. First, radiomics
features are partly associated with VOI segmentations. This
study was based on the radiologist-annotated features. Although
a high interobserver agreement as well as an excellent
feature repeatability has been achieved, it can be subjected

to interobserver or intraobserver variability. Automatic or
semiautomatic lesion segmentation methods that capture lesions
more accurately can be explored in the future. Second, although
a prospective study for collecting new cases is still ongoing by
our group to increase the sample volume, the low incidence
of ACAs determines that a small sample size was used in
current research. Third, all the patients were from a single
center. Although cross-validation is used for model evaluation,
the model may perform differently if multicenter datasets with
different parameters are used. Next, a multicenter large-scale data
from different institutions should be involved and deep learning
could be employed to enhance stability and discrimination
performance of model. Future work should extend radiomics to
other adrenal tumors such as distinguishing between functional
and non-functional adenomas and detecting the nature of
adrenal incidentaloma.

CONCLUSIONS

In summary, we have preliminarily investigated the performance
of multiparametric CT radiomics-based machine learning
model for differentiating CPA from APA. The proposed
radiomics analytic framework presents an encouraging result in
differential diagnosis between those than conventional imaging
techniques. This method may provide a non-invasive and
economic approach to facilitate the clinical decision-making in
some special conditions such as atypical clinical symptom or
hormone secretion and localize responsible lesion in bilateral or
multiple tumors.
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