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Abstract
Objectives This study aimed to explore and validate the value of different radiomics models for differentiating benign and
malignant parotid tumors preoperatively.
Methods This study enrolled 388 patients with pathologically confirmed parotid tumors (training cohort: n = 272; test cohort: n =
116). Radiomics features were extracted from CT images of the non-enhanced, arterial, and venous phases. After dimensionality
reduction and selection, radiomics models were constructed by logistic regression (LR), support vector machine (SVM), and
random forest (RF). The best radiomic model was selected by using ROC curve analysis. Univariate and multivariable logistic
regression was applied to analyze clinical-radiological characteristics and identify variables for developing a clinical model. A
combined model was constructed by incorporating radiomics and clinical features. Model performances were assessed by ROC
curve analysis, and decision curve analysis (DCA) was used to estimate the models’ clinical values.
Results In total, 2874 radiomic features were extracted from CT images. Ten radiomics features were deemed valuable by
dimensionality reduction and selection. Among radiomics models, the SVM model showed greater predictive efficiency and
robustness, with AUCs of 0.844 in the training cohort; and 0.840 in the test cohort. Ultimate clinical features constructed a
clinical model. The discriminatory capability of the combined model was the best (AUC, training cohort: 0.904; test cohort:
0.854). Combined model DCA revealed optimal clinical efficacy.
Conclusions The combined model incorporating radiomics and clinical features exhibited excellent ability to distinguish benign
and malignant parotid tumors, which may provide a noninvasive and efficient method for clinical decision making.
Key Points
& The current study is the first to compare the value of different radiomics models (LR, SVM, and RF) for preoperative

differentiation of benign and malignant parotid tumors.
& A CT-based combined model, integrating clinical-radiological and radiomics features, is conducive to distinguishing benign

and malignant parotid tumors, thereby improving diagnostic performance and aiding treatment.
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mRMR Minimum redundancy maximum correlation
NPV Negative prediction value
ORs Odds ratios
PA Pleomorphic adenoma
PACS Picture archiving and communication systems
PPV Positive prediction value
RF Random forest
ROC Receiver operating characteristic
ROI Region of interest
SVM Support vector machine
WT Warthin tumor

Introduction

Parotid tumors are the most dominant salivary gland tumors,
of which approximately 80% are benign, and 20% are malig-
nant [1]. It has complex and diverse histopathological types.
There are 24 histologic types of malignant parotid tumors, the
most common being mucoepidermoid carcinoma, and there
are 11 histologic types of benign parotid tumors, the most
common being pleomorphic adenoma (PA), followed by
Warthin tumor (WT) and basal cell adenoma (BCA) [2].
Although the primary treatment for parotid tumors is surgery,
various histological types of parotid tumors determine signif-
icantly different treatment decisions and prognoses [3, 4].
Thus, accurate preoperative assessment of benign and malig-
nant parotid tumors is essential for tailoring treatment
decisions.

Parotid tumors rarely have apparent clinical symptoms, so
the preoperative distinction between benign and malignant
parotid tumors mainly relies on fine-needle aspiration biopsy
(FNAB) and imaging examination. Although FNAB is the
most common preoperative qualitative examination for parot-
id tumors [5], it carries the risk of tumor cell transplantation
and induced mumps, and limited sampling sometimes makes
the cytohistologic diagnosis inconclusive [6]. Currently, pre-
operative imaging for parotid tumors includes ultrasound,
magnetic resonance imaging (MRI), and computed tomogra-
phy (CT). Due to ultrasound examination being easily affected
by the tumor location and adjacent bone, its diagnostic effica-
cy is limited, so CT and MRI examinations are mainly used
nowadays [7, 8]. Although MRI demonstrates excellent reso-
lution of soft tissues, multiphase CT provides valuable infor-
mation on tumor characteristics and surrounding structures at
a lower cost and is time-consuming than MRI [9, 10].
However, due to the overlapping radiological features of be-
nign and malignant parotid tumors, imaging sometimes leads
to uncertain results, depending mainly on the experience of
physicians [11].

Radiomics, an emerging and prospective field, provides
comprehensive quantification of tumor types through high-
throughput extraction and mining a large number of image

features [12]. With the development of algorithms and artifi-
cial intelligence, recent studies have described the application
of radiomics analysis in parotid tumors [13–16]. These studies
demonstrated that radiomics might help patients with benign
or malignant parotid tumors solve clinical problems and opti-
mize treatment. The reliability, high accuracy, and efficacy of
predictivemodels are crucial factors promoting radiomics suc-
cess. Hence, it is meaningful to compare different machine
learning models of radiomics-based clinical biomarkers [17].
Nevertheless, to our knowledge, no studies have investigated
the application of different radiomics-based models in differ-
entiating benign and malignant parotid tumors.

In this study, we chose different machine learning ap-
proaches for radiomics models to develop and validate a
CT-based combined model of radiomics and clinical features
for distinguishing benign and malignant parotid tumors.

Materials and methods

Patient population

The institutional ethics review board approved this retrospec-
tive study of our institution, and the requirement of patient
approval or written informed consent for reviewing medical
records or images was waived. The data of 388 patients with
parotid tumors who underwent parotid surgery in our hospital
from January 2014 to September 2021 were included in the
study. Inclusion criteria were as follows: (1) patients under-
went preoperative CT plain scan and two-phase enhanced
scan; (2) no history of FNAB, radiotherapy, and chemothera-
py; and (3) PA,WT, BCA, and malignant parotid tumors were
diagnosed by postoperative pathology and had complete clin-
ical data. Exclusion criteria were as follows: (1) images with
severe motion artifacts or evident noise; (2) maximum tumor
diameter less than 1.0 cm; and (3) other tumor diseases. These
patients were randomly separated into a training cohort and a
test cohort at a 7:3 ratio (see Fig. 1 for details). The tumor
distribution is described in Table 1.

Image acquisition

CT scans were performed using two 64-slice CT scanners
(Somatom Sensation 64, Siemens Healthcare; Discovery
750, GE Healthcare) with the following parameters: 120 kV
tube voltage; automatic tube current modulation (150–200
mAs); 64 × 0.625-mm detector collimation; matrix of 512 ×
512; section thickness, 5 mm; section interval, 5 mm. The
scanning area ranged from the skull base down to the thorax
inlet. Non-enhanced CT scan was performed first, and en-
hanced images were obtained after intravenous injection of
nonionic iodinated contrast medium (Ultravist 370, Bayer
Schering Pharma) (1.5 mL/kg, 3.5 mL/s). Contrast-enhanced
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CT images were performed at 40 and 100 s after contrast
material injection in the arterial phase and venous phase,
respectively.

Radiological and clinical data analysis

Patient images and clinical data were obtained from our hos-
pital’s regular clinical records and picture archiving and com-
munication systems (PACS). We retrospectively analyzed
clinical parameters including age, disease duration, symp-
toms, sex, smoking/drinking status, hospitalization number,
and postoperative pathological diagnosis. All CT images were
assessed and agreed upon by two radiologists with 5 and 34
years of experience in head and neck CT, respectively, who
were blinded to the histopathological and clinical data. The
following parameters were analyzed: maximum diameter, tu-
mor number, distribution, shape, margin, tumor location, den-
sity, calcification, cystic degeneration, enhanced peak phase,
enhancement degree, enhanced uniformity, enlarged

ipsilateral lymph nodes, and infiltration of surrounding tissues
(IST). Some radiological feature definitions can be found in
the Supplementary Material. When there were multiple le-
sions in the parotid gland, the largest lesion with confirmed
pathology was selected for analysis.

Image segmentation

All images were saved as standard soft tissue settings (win-
dow width, 400 HU; window level, 40 HU) [18], which were
stored in Digital Imaging and Communications in Medicine
(DICOM) format. Blinded to patients’ histopathological re-
sults, two radiologists (with 5 and 12 years of diagnostic ex-
perience) manually segmented the region of interest (ROI) by
using ITK-SNAP software (version 3.8.0, http://www.itksnap.
org/). The tumors were delineated along margins layer-by-
layer on axial multiphase CT images, excluding adjacent nor-
mal tissue, calcification, and vessel. A complete schematic is
presented in Fig. 2.

Fig. 1 Flowchart for selecting the
study population
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Images and data were preprocessed by resampling and
standardization to assure repeatability of the results. The
intra- and interobserver reproducibility were assessed by the
intraclass correlation coefficient (ICC); 116 patients (93 be-
nign tumors and 23 malignant tumors) were chosen at random
for ROI segmentation again by radiologist 1 after 1 month,
and an ICC greater than 0.9 indicated good consistency.

Radiomics feature extraction/selection

For feature extraction, all images and ROIs were batched
into AK software (Artificial Intelligence Kit, version
3.2.2, GE Healthcare). These radiomics features included
the shape, histogram, Haralick, gray-level co-occurrence
matrix (GLCM), gray-level run-length matrix (GLRLM),

Fig. 2 Workflow of this study

Table 1 Histologic analysis of
parotid tumors Histologic type Patients (n) Male/female %

Benign tumors 310 180/130 79.9

Pleomorphic adenoma 144 58/86 37.1

Warthin tumor 109 100/9 28.1

Basal cell adenoma 57 22/35 14.7

Malignant tumors 78 42/36 20.1

Mucoepidermoid carcinoma 21 10/11 5.4

Acinic cell carcinoma 16 7/9 4.1

Lymphoma/lymphoepithelial carcinoma 9 3/6 2.3

Adenoid cystic carcinoma 7 4/3 1.8

Squamous cell carcinoma 6 6/0 1.5

Myoepithelial carcinoma 4 3/1 1.0

Adenocarcinoma 3 2/1 0.8

Salivary ductal carcinoma 3 3/0 0.8

Eosinophilic cell carcinoma 3 3/0 0.8

Secretory carcinoma 2 1/1 0.5

Basal cell carcinoma 1 0/1 -

Rhabdomyosarcoma 1 0/1 -

Carcinoma in pleomorphic adenoma 1 1/0 -

Undifferentiated carcinoma 1 0/1 -
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and gray-level size zone matrix (GLSZM). These algo-
rithms for obtaining radiomic features were referenced
from the image biomarker standardization initiative
(IBSI) [19]. The radiomic features dimensionality reduc-
tion and selection in the training cohort were as follows:
first, analysis of variance (ANOVA) was performed on
the extracted features to select statistically significant fea-
tures with ICC scores > 0.9. Second, the minimum redun-
dancy maximum correlation (mRMR) algorithm was ap-
plied to select the features with the highest relevance with
tumor classification and least redundancy. Ultimately, the
least absolute shrinkage and selection operator (LASSO)
regression model with 10-fold cross-validation was used
to select features with nonzero coefficients (Fig. 3). All
feature selection procedures were executed on the training
cohort and used for the test cohort.

Development of radiomics signature models

The final selected features were applied to construct
radiomics models. To select a classifier model that has
the greatest recognition of tumor data, our study chose
three mainstream machine learning algorithm training
models, including logistic regression (LR), support vector
machine (SVM), and random forest (RF). The diagnostic
performances of the three models were compared by the
area under the curve (AUC) of the receiver operating
characteristic curve (ROC), accuracy, sensitivity, specific-
ity, positive prediction value (PPV), and negative predic-
tion value (NPV). Then, the best radiomics model was
screened.

Clinical and combined models’ construction and
validation

Univariate logistic regression analysis was performed on
each predictor variable, including clinical and radiological
characteristics in the training cohort, after which multivar-
iable logistic regression analysis was used on selected
statistically significant features to obtain ultimate predic-
tor variables for model development. Odds ratios (ORs)
with 95% confidence intervals (CIs) were calculated for
each factor. As machine learning can provide highly ac-
curate, objective, and reliable models to assist clinical
decisions [17], we chose the best radiomics model to con-
struct a combined model based on the selected predictors.
The performances of models were evaluated and validated
by the training and test cohorts, including the AUC, ac-
curacy, sensitivity, specificity, PPV, and NPV. Decision
curve analysis (DCA) quantified the net benefits with dif-
ferent threshold probabilities in training and test cohorts
to evaluate the models’ clinical efficiency in tumor
classification.

Statistical analysis

SPSS software (version 26.0, IBM), R software (version
3.6.3; https://www.r-project.org), and Python software
(version 3.5.6; http://www.python.org) were applied for
statistical analysis. Student’s t-test was used for
continuous variables, expressed as x ± s, and the chi-
square test or Fisher’s exact test was applied for categor-
ical variables, presented as ratios. The forward stepwise
selection method was used in multivariable logistic

Fig. 3 Feature selection with the least absolute shrinkage and selection
operator (LASSO) regression model. a The LASSO model’s tuning pa-
rameter (λ) selection used 10-fold cross-validation via minimum criteri-
on. The vertical lines indicate the optimal value of the LASSO tuning

parameter (λ). b LASSO coefficient profile plot with different log (λ) was
shown. The vertical dashed lines represent 10 radiomics features with
nonzero coefficients selected with the optimal λ value
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regression analysis based on the Akaike information cri-
terion (AIC). A two-tailed p-value < 0.05 indicated statis-
tical significance.

Results

Patients’ population and radiological characteristics

A total of 388 patients (222 men, 166 women) were re-
cruited for our study, including 272 patients in the train-
ing cohort and 116 patients in the test cohort. The results
indicated that there were no significant differences be-
tween the training and test cohorts (see Table 1 in the
Supplementary Materials for more information). The de-
tails of patients’ clinical and radiological features are
summarized in Table 2. In the training cohort, symptoms,
shape, margin, tumor location, maximum diameter, lymph
node status, and IST were significantly different between
benign and malignant parotid tumors. There were signifi-
cant differences in symptoms, margin, tumor location, and
IST in the test cohort. Univariate and multivariable logis-
tic regression analyses showed that symptom, shape, mar-
gin, and enlarged lymph nodes were independent predic-
tors of malignant tumors (Table 3). A clinical model was
constructed by these four features. Malignant tumors were
more likely to have symptoms (OR, 8.335; 95% CI, 3.504
to 19.829), unclear margin (OR, 7.159; 95% CI, 3.455 to
14.833), enlarged ipsilateral lymph nodes (OR, 3.259;
95% CI, 1.545 to 6.874), and nonround shape (OR,
2.163; 95% CI, 1.176 to 3.980).

Radiomic signature models and performances

A total of 958 radiomic features were extracted from a
single ROI; therefore, 2874 radiomic features were ex-
tracted from images of three scanning phases. Among
these features, 10 features with nonzero coefficients were
retained after feature downscaling and selection (Table 4).
The ROC curves of three radiomics models (including
LR, SVM, RF) in the training and test cohorts are shown
in Fig. 4. In the training cohort, the best radiomic model
was RF, with an AUC of 0.986, an accuracy of 0.908, a
sensitivity of 0.909, a specificity of 0.972, PPV of 1.000,
and NPV of 0.897. However, in the test cohort, the best
radiomic model was SVM. The AUC, accuracy, sensitiv-
ity, specificity, PPV, and NPV of the SVM model were
0.840, 0.853, 0.696, 0.892, 0.800, and 0.858, respectively
(see Table 5 for details). The RF model of the training and
test cohorts showed a trend of overfitting. To ensure the
stability and sustainability of radiomic model, we finally
chose the SVM model as the best radiomic model.

Combined model construction and validation

By integrating clinical predictors (symptoms, shape, margin,
and enlarged lymph nodes) with the 10 radiomics features, we
developed a combined model. The clinical model, radiomic
model, and combined model were constructed using SVM to
uniformly and objectively evaluate the diagnostic efficacy of
different models. The ROC curves of the three models in the
training and test cohorts are presented in Fig. 5. In the training
and test cohorts, the discrimination ability of the combined
model was significantly better than that of the clinical and
radiomic signature models (Table 5), with a higher AUC
(0.904 in the training cohort; 0.854 in the test cohort). The
DCAs of the three models are shown in Fig. 6. The results
indicated that the combinedmodel had the most significant net
benefit in classifying parotid tumors in training and test
cohorts.

Discussion

The present study suggested that CT-based radiomics models
may effectually differentiate benign and malignant parotid
tumors and improve diagnostic performance combined with
clinical features. Thus, we developed a CT-based combined
model that integrated clinical predictors and radiomics signa-
tures using SVM for differentiating parotid tumors with satis-
factory outcomes. It may provide a promising noninvasive
method that is feasible and reliable for parotid tumor
evaluation.

Our study demonstrates that benign parotid tumors
were commonly observed in females, excluding WT,
while the incidence of malignant tumors was similar be-
tween males and females, consistent with the results of
Comoglu [20]. Consistent with our results, Inaka Y [21]
reported that malignant tumors had a significantly higher
incidence of several symptoms than benign tumors.
Typically, there are nonspecific symptoms when parotid
tumors are discovered. Hence, preoperative diagnosis of
parotid tumors primarily relies on imaging examinations,
especially CT and MRI [4, 5, 9]. This study showed that
benign parotid tumors occurred mostly in superficial
lobes, with clear margins, whereas malignant tumors oc-
curred primarily in deep lobes or grew across the lobes,
with unclear margins, which is similar to some studies [4,
10, 11]. The present study is similar to some studies [21,
22] in that lymph node enlargement is valuable in distin-
guishing benign from malignant parotid tumors. Although
Kato [23] suggested that imaging features of the
intratumoral cystic components could help distinguish be-
nign from malignant parotid tumors, this is inconsistent
with our findings and may be related to the predisposition
of some benign parotid tumors to cystic degeneration. Liu
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Table 2 Clinical and radiological characteristics in the training and test cohorts

Variable Training cohort (n = 272) Testing cohort (n = 116)

Benign (n = 217) Malignant (n = 55) p-value Benign (n = 93) Malignant (n = 23) p-value

Age (years) 51.79 ± 14.31 50.02 ± 16.55 0.468 53.58 ± 15.95 53.22 ± 15.75 0.922

Duration (months) 26.67 ± 51.24 36.02 ± 103.53 0.343 32.12 ± 63.62 33.38 ± 74.36 0.935

Max-diameter (cm) 2.95 ± 1.26 3.43 ± 1.08 0.010* 2.90 ± 1.07 3.47 ± 1.45 0.090

Symptoms With 9 (4.15%) 14 (25.45%) < 0.001* 4 (4.30%) 5 (21.74%) 0.018*

Without 208 (95.85%) 41 (74.55%) 89 (95.70%) 18 (78.26%)

Sex Female 99 (45.62%) 26 (47.27%) 0.826 31 (33.33%) 10 (43.48%) 0.362

Male 118 (54.38%) 29 (52.73%) 62 (66.67%) 13 (56.52%)

Smoking Yes 96 (44.24%) 20 (36.36%) 0.291 48 (51.61%) 10 (43.48%) 0.485

No 121 (55.76%) 35 (63.64%) 45 (48.39%) 13 (56.52%)

Drinking Yes 82 (37.79%) 16 (29.09%) 0.230 25 (26.88%) 7 (30.43%) 0.733

No 135 (62.21%) 39 (70.91%) 68 (73.12%) 16 (69.57%)

Number Multiple 30 (13.82%) 10 (18.18%) 0.415 10 (10.75%) 1 (4.35%) 0.588

Single 187 (86.18%) 45 (81.82%) 83 (89.25%) 22 (95.65%)

Distribution Left-sided 103 (47.47%) 30 (54.55%) 0.105 40 (43.01%) 12 (52.17%) 0.352

Right-sided 98 (45.16%) 25 (45.45%) 46 (49.46%) 11 (47.83%)

Bilateral 16 (7.37%) 0 7 (7.53%) 0

Shape Round 155 (71.43%) 25 (45.45%) < 0.001* 67 (72.04%) 14 (60.87%) 0.296

Non-round 62 (28.57%) 30 (54.55%) 26 (27.96%) 9 (39.13%)

Margin Clear 187 (86.18%) 26 (47.27%) < 0.001* 80 (86.02%) 12 (52.17%) 0.001*

Unclear 30 (13.82%) 29 (52.73%) 13 (13.98%) 11 (47.83%)

Location Superficial 155 (71.43%) 26 (47.27%) 0.002* 67 (72.04%) 10 (43.48%) 0.029*

Deep 34 (15.67%) 19 (34.55%) 18 (19.35%) 8 (34.78%)

Both 28 (12.90%) 10 (18.18%) 8 (8.60%) 5 (21.74%)

Density Homogeneous 183 (84.33%) 42 (76.36%) 0.163 78 (83.87%) 19 (82.61%) 0.884

Heterogeneous 34 (15.67%) 13 (23.64%) 15 (16.13%) 4 (17.39%)

Calcification With 9 (4.15%) 5 (9.09%) 0.254 2 (2.15%) 0 1.000

Without 208 (95.85%) 50 (90.91%) 91 (97.85%) 23 (100.00%)

Cystic areas NO 171 (78.80%) 41 (74.55%) 0.572 75 (80.65%) 18 (78.26%) 0.740

Marginal 40 (18.43%) 11 (20.00%) 13 (13.98%) 3 (13.04%)

Central 6 (2.76%) 3 (5.45%) 5 (5.38%) 2 (8.70%)

Enhanced peak phase Arterial 86 (39.63%) 20 (36.36%) 0.657 40 (43.01%) 9 (39.13%) 0.736

Venous 131 (60.37%) 35 (63.64%) 53 (56.99%) 14 (60.87%)

Enhancement degree Slight 31 (14.29%) 5 (9.09%) 0.609 10 (10.75%) 2 (8.70%) 0.482

Moderate 63 (29.03%) 20 (36.36%) 31 (33.33%) 5 (21.74%)

Obvious 123 (56.68%) 30 (54.55%) 52 (55.91%) 16 (69.57%)

Enhanced uniformity Yes 129 (59.45%) 25 (45.45%) 0.061 56 (60.22%) 12 (52.17%) 0.483

No 88 (40.55%) 30 (54.55%) 37 (39.78%) 11 (47.83%)

Enlarged lymph nodes With 18 (8.29%) 18 (32.73%) < 0.001* 7 (7.53%) 4 (17.39%) 0.294

Without 199 (91.71%) 37 (67.27%) 86 (92.47%) 19 (82.61%)

IST With 19 (8.76%) 14 (25.45%) 0.001* 7 (7.53%) 6 (26.09%) 0.031*

Without 198 (91.24) 41 (74.55%) 86 (92.47%) 17 (73.91%)

*Represents p < 0.05. Numerical data are presented as mean ± standard deviation. Categorical data as numbers (n%); IST infiltration of surrounding
tissues
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[8] and Liu [24] separately reported no significant differ-
ences in diagnostic efficacy and radiomics features for
identifying parotid tumors between MRI and CT. The
subjective influence of personal clinical experience and
a single evaluation index are main limitations of these
studies. Currently, a consensus on imaging features to
classify benign and malignant parotid tumors has not been

established. Consequently, a new noninvasive method is
desired to differentiate parotid tumors.

Radiomics is a noninvasive method, which constructs
models based on the original images by intelligent calcu-
lation to obtain more information and can reflect poten-
tially relevant phenotypic information based on tumor het-
erogeneity, providing valuable diagnosis, prognosis, and

Table 3 Univariate and
multivariable logistic regression
analyses for selecting clinical
features of model development

Variable Univariate analysis Multivariate analysis

OR (95% CI) p-value OR (95% CI) p-value

Age (years) 0.994 (0.978, 1.010) 0.475

Duration (months) 1.001 (0.998, 1.005) 0.406

Max-diameter (cm) 1.370 (1.118, 1.678) 0.020* 1.034 (0.813, 1.316) 0.782

Symptom 7.357 (3.445, 15.712) < 0.001* 8.335 (3.504, 19.829) < 0.001*

Sex 0.843 (0.512, 1.388) 0.501

Smoking 0.720 (0.434, 1.197) 0.206

Drinking 0.793 (0.462, 1.362) 0.401

Number 0.877 (0.426, 1.802) 0.720

Distribution 0.673 (0.437, 1.036) 0.072

Shape 2.523 (1.518, 4.192) < 0.001* 2.163 (1.176, 3.980) 0.013*

Margin 6.199 (3.594, 10.690) < 0.001* 7.159 (3.455, 14.833) < 0.001*

Location 1.788 (1.299, 2.462) < 0.001* 1.329 (0.885, 1.995) 0.171

Density 1.484 (0.800, 2.754) 0.210

Calcification 1.862 (0.627, 5.524) 0.263

Cystic areas 1.254 (0.801, 1.962) 0.322

Enhanced peak phase 1.157 (0.693, 1.931) 0.577

Enhancement degree 1.156 (0.806, 1.658) 0.431

Enhanced uniformity 1.640 (0.996, 2.701) 0.052

Enlarged lymph nodes 4.479 (2.360, 8.498) < 0.001* 3.259 (1.545, 6.874) 0.002*

IST 3.021 (1.570, 5.813) 0.001* 0.490 (0.198, 1.210) 0.122

*Represents p < 0.05. OR odds ratio, CI confidence interval, IST infiltration of surrounding tissues

Table 4 Radiomics features’
selection results CT scanning phase ID Radiomics features’ name

Non-enhanced phase 1 wavelet.HLH_glcm_ClusterShade

2 log.sigma.3.0.mm.3D_glszm_SizeZoneNonUniformityNormalized

3 log.sigma.1.0.mm.3D_glrlm_
RunLengthNonUniformityNormalized

4 log.sigma.1.0.mm.3D_firstorder_Skewness

Arterial phase 1 wavelet.HHH_glszm_ZoneVariance

2 original_shape_Sphericity

3 wavelet.HHL_glcm_Imc1

Venous phase 1 original_glrlm_LongRunLowGrayLevelEmphasis

2 wavelet.HLL_glcm_Imc1

3 wavelet.LHH_glcm_JointEntropy

glcm gray-level co-occurrence matrix, glszm gray-level size zone matrix, glrlm gray-level run-length matrix
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individualized treatment [12]. Our study suggested that
texture features, consisting mainly of GLCM features, dif-
fered significantly in distinguishing malignant from be-
nign parotid tumors, similar to the results of Xu [25]
and Zhang [16]. It can be speculated that malignant tu-
mors grow quickly and easily cause necrosis and
microhemorrhage, making their heterogeneity higher than
that of benign tumors.

This study indicated that the SVM and RF models were
more effective than the LR model. It is speculated that
parotid tumor data may be nonlinear or linearly insepara-
ble, so the LR model using a linear algorithm is less
efficient than nonlinear RF and SVM. RF is an algorithm
that integrates multiple decision trees through ensemble

learning, which is excellent in accuracy among current
algorithms and can attribute selection while predicting
classification [26, 27]. However, it has poor generaliza-
tion ability when processing small sample cohorts and
may overfit. SVM, with satisfactory stability and efficien-
cy, achieved almost the same performance as a large num-
ber of training samples with fewer training samples [28,
29]. Our combined model exhibited the best diagnostic
performance (AUC, training cohort: 0.904; test cohort:
0.854), followed by the SVM, RF, and LR models alone
and then the clinical-radiological features. It suggested
that although tumor radiomics models have more excel-
lent predictive capability than clinical features, clinical-
radiological information is also significant. Only by

Table 5 Diagnostic performance of different models for predicting parotid tumors in training and test cohorts

Model AUC (95% CI) Accuracy Sensitivity Specificity PPV NPV

LR Training 0.826 (0.770, 0.880) 0.809 0.673 0.848 0.522 0.906

Test 0.798 (0.698, 0.891) 0.810 0.696 0.871 0.516 0.918

SVM* Training 0.844 (0.788, 0.896) 0.857 0.764 0.816 1.000 0.848

Test 0.840 (0.761, 0.911) 0.853 0.696 0.892 0.800 0.858

RF Training 0.986 (0.976, 0.995) 0.908 0.909 0.972 1.000 0.897

Test 0.779 (0.680, 0.874) 0.845 0.696 0.785 0.727 0.857

Clinical* Training 0.797 (0.739, 0.851) 0.838 0.818 0.677 0.867 0.837

Test 0.753 (0.657, 0.843) 0.828 0.739 0.709 1.000 0.823

Combined* Training 0.904 (0.863, 0.942) 0.890 0.763 0.912 0.931 0.885

Test 0.854 (0.770, 0.931) 0.871 0.696 0.935 0.750 0.890

*Represents models were constructed using SVM

LR logistic regression, SVM support vector machine, RF random forest, AUC area under the curve, PPV positive prediction value, NPV negative
prediction value

Fig. 4 The receiver operating characteristic (ROC) curves of the SVM, RF, and Logistic in the training (a) and validation (b) cohorts, respectively.
Logistic, logistic regression; SVM, support vector machine; RF, random forest
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incorporating these features could the model accurately
estimate parotid tumors.

This study had several limitations. First, this was a
retrospective, single-center study, which may cause poten-
tial selection bias. Second, some controversies were asso-
ciated with subjectivity in defining the boundaries of
manual segmentation [30]. We hope to achieve complete
automation by deep learning in the future. Third, we
adopted CT-enhanced phases of only arterial and venous
in this study, while a 5- or 8-min delayed-phase proved
valuable [9, 31]. Further prospective studies will investi-

gate and validate whether delayed-phase radiomics could
refine model performance.

Conclusion

In summary, our study proposed and verified a CT-based
combined model integrating clinical-radiological and
radiomics features to differentiate benign and malignant
parotid tumors. In our study, the combined model using
SVM exhibited the best diagnostic performance and may

Fig. 5 Receiver operating characteristic (ROC) curves for the SVMmodel, clinical model, and combined model when predicting malignancy in training
cohort (a) and test cohort (b)

Fig. 6 Decision curve analysis (DCA) for three models in classifying parotid gland tumors in training (a) and test (b) cohorts, respectively. The graphs
show that the combined model has the greatest net benefit for both datasets
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serve as a potential approach in precision medicine and
improve clinical therapeutic strategies.
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